
How To Double Your R&D Effectiveness 

Introduction 
Digitalization is disrupting industry after industry and, as the saying goes, software is eating the 
world. More and more companies define their competitiveness by increasing amounts of 
software and the value created in products, solutions and services is driven by bits rather than 
atoms. As a consequence, the ability of companies to engineer software efficiently and 
effectively becomes a key differentiator. There are several reasons why software engineering, 
relative to material science and electrical engineering, is increasing in relevance. The main 
factors, for most companies, are threefold. First, software can be deployed and updated 
throughout the economic life of a product, solution or service. So, rather than having a system 
that is fixed and immutable from the point system design is finalized, software allows for 
continuous improvement. Second, software allows for a level of customization and 
personalization that is entirely unfeasible for anything atoms-based. The software in the system 
allows for dynamic adjustment of user interfaces, algorithmic behaviours, presence or absence 
of features, etc. As most mobile phone users have realized, although the hardware and 
mechanics of your phone are the same as everyone else’s, it is the software that makes your 
phone unique and personalized. Finally, software allows for a transition from opinion-based to 
data-driven decision making. The same mechanisms that allow for software to be continuously 
deployed on your system also allow us to measure customer behaviour and system 
performance, allowing for a fast feedback loop to develop between R&D and the software 
deployed in the field. 
 
With companies adding software based functionality to their products, the amount of R&D 
resources allocated to software started to go up as well. Many companies follow Moore’s law in 
terms of the amount of software being put in the system if only for the simple reason that 
systems engineers are driven by bill of materials cost. As the cost of electronics is halved every 
12 to 18 months it is viewed as “free” to double the computational power and memory space. 
This does mean, though, that computing resources grow exponentially and no self respecting 
product manager, architect or engineer will let all those resources go to waste and instead look 
for ways to add value to the system. As a consequence, the size of the software in many 
systems follows the hardware capability and doubles every five to ten years. 
 
The consequence of this is that the amount of resources allocated to software has been going 
up in most companies and as with any exponential growth, at some point the limits of reality 
start to hit. As most companies express R&D as a percentage of revenue, the challenge is that 
as more and more resources are requested for maintaining, evolving and creating software, at 
some point it become unfeasible to meet these requirements. This is when R&D management, 
often far from experts on software, start to squeeze the resource requirements. 
 



The main problem is that due to a lack of understanding of software, general and R&D 
management treats all software as being created equal. Hence, rather than focusing the 
software R&D resources on those software assets that are most important and limit resource 
allocation to those areas that are less important, the approach tends to be to just limit R&D 
resources across the board. This then leads to underinvestment in R&D and a negative effect 
on competitiveness. Strategic use of the R&D resources allocated to the strategic software 
components and subsystems becomes increasingly important with the increasing importance of 
the role of software, but companies fail to do so as they lack the tools to reason effectively and 
systematically about the allocation of resources to software.  
 
This book provides one set of tools to address the aforementioned challenge of effectively and 
systematically reasoning about software assets, resource allocation, refactoring, platforms and 
engaging the ecosystem surrounding your organization. As the foundation for this set of tools 
we have developed the three layer product model (3LPM) as a tool and framework to reason 
about strategic use of software in large scale software engineering. The 3LPM, either 
conceptually or physically, organizes the software functionality into one of three types, i.e. 
commodity functionality, differentiating functionality or innovative and experimental functionality. 
By categorizing the functionality in a system, the 3LPM supports several types of decision 
making that allow for a much more strategic and focused approach to software R&D. Although 
we’ll introduce the 3LPM in more detail later, the figure below shows the basic elements and 
structure. 

 
Figure X: The Three Layer Product Model 

 



Although the 3LPM may easily look like a high-level architecture picture, it can be used for 
several use cases concerning resource allocation, architecture refactoring, software platforms 
and ecosystems. In this short book, we discuss the four primary use cases. These use cases 
also form the four main parts of the book: 

1. Strategic resource allocation: In the first part, we focus on the key problem that we 
raised in the introduction: resource allocation into software R&D is often conducted 
without any understanding or awareness of the differences between different areas of 
functionality in the system. Allocating resources in an undifferentiated fashion easily 
results in the majority of resources being allocated to commodity functionality rather than 
innovation and differentiation. As shown in the figure above, our research shows that in 
typical companies, 80-90% of resources are allocated to commodity functionality. In the 
first part of the book, we start by categorizing the components in existing software as 
innovative, differentiating or commodity. Based on this, resource allocation can be 
controlled by allocating resources predominantly to innovation and differentiating 
functionality whereas only resources for bug fixing is allocated to commodity 
components. This facilitates limiting resources to commodity functionality and results in a 
much more strategic allocation of resources. 

2. Refactor software: Although part I is concerned with strategic resource allocation, it 
does not affect the structure of existing software assets. The second part of the book is 
concerned with refactoring the software to align with the architectural structure proposed 
by the 3LPM. This provides much simpler management of software assets and allows for 
organizational alignment with the main software layers. In part II, we focus on assessing 
the current architecture, designing the desired architecture and planning and 
implementing the transformation.  

3. Towards platforms: As the structure of the 3LPM suggests, there is a very natural 
transition from a single 3LPM for a system or product to a platform where the 3LPM is 
used to model where functionality is allocated and how it transitions. When a software 
asset (or multiple) are split into a platform and products on top of the platform, the 
interface and the process for moving functionality between products and platform need 
to be discussed. Of course, at this point it will also have become obvious that one can 
experience a cascading series of 3LPM where the commodity layer of one model, for 
instance a product, is aligned with the differentiation layer of the platform model that it is 
built on top of. This is the topic of part III. 

4. Engaging the ecosystem: In the final part of the book, we discuss the use of the 3LPM 
to engage with the ecosystems around the company. As we’ll discuss in part IV, the 
position we take is that every organization is involved in at least three ecosystems, 
organized around the 3LPM layers, i.e. an innovation, differentiation and commodity 
ecosystem. As companies are no islands, the ability to engage ecosystem partners, 
either in a directed or undirected fashion, for those parts where the company itself does 
not have a unique differentiation is critical. However, once again, companies often lack a 
systematic and effective model for deciding when and where to engage their 
ecosystems. In this context, we’ll discuss the Three Layer Ecosystem Strategy Model 
(TeLESM) to provide strategic guidance on ecosystem engagement. 



 
In the remainder of this introduction, we first introduce the three layer product model in more 
detail. Subsequently, we introduce WKI, the running case example that we’ll use throughout the 
book. 

The Three Layer Product Model Framework 
In most organizations, the connection between the “business side” and the “engineering side” of 
the company is not as strong as it should be. This easily leads to a situation where both sides 
make decisions about product functionality, allocation of resources, prioritization of customer 
requests, etc. without a full understanding of the implications. This frequently causes major 
inefficiencies in the organization. For instance, R&D may engage on major refactoring efforts in 
areas of the architecture that are irrelevant from a business perspective. Or, the sales team may 
promise functionality to customers that results in severely negative implications for the product 
architecture. In the most unfortunate cases, this leads to a situation where the business side 
views R&D as incompetent and slow and R&D views the business side as naive and ignorant of 
the technical realities of their systems. 
 
The main reason for discrepancies and inefficiencies between business and engineering is 
because of a lack of language and tools to facilitate effective communication, prioritization and 
agreement on key priorities. In response to this, as well as several other challenges, we have 
developed the Three Layer Product Model (3LPM) as a tool to facilitate common understanding 
across the company.  
 
The 3LPM is graphically presented in figure X. The 3LPM starts with classifying all functionality 
into three main categories. The first category is the commodity functionality. This constitutes all 
functionality that customers typically expect in a product or system, but that is also offered by 
competing companies. Because of this, there is no differentiation or preference to be expected 
from customers. As there is no benefit to be gained from this type of functionality beyond the 
“tick the box”, the focus should be to offer this functionality at the lowest possible cost. As this 
functionality typically has been part of the system for a long time (likely it was differentiating at 
some point in the past), R&D efforts concerning this functionality should focus on minimizing the 
total cost of ownership and attempts to add and perfect functionality should be discouraged. 
Most of the efforts should be concerned with simplifying the structure and replacing proprietary 
software components with open-source or commercial components. If possible, removing 
commoditized functionality from the system should be considered if this would be feasible from 
a customer expectations perspective. 
 
The next layer is the differentiating functionality layer. This layer contains the functionality that 
makes customers select our products or systems over those from competitors. Depending on 
the industry, the functionality will be in this layer for a few weeks, months or years before it 
commoditizes and transitions to the bottom layer. While the functionality is driving the 
differentiation, though, the focus should be to invest such that the value delivered by this 



functionality is maximized for customers. This is typically accomplished by enriching the 
functionality in various ways, such as adding variation points to allow for different configurations, 
supporting multiple paths through the use case and supporting exceptional cases well as well as 
deeply integrating the user experience of different chunks of functionality in a fashion that 
makes interacting with the system natural for the user. For systems that are less driven by user 
interaction but by standalone, autonomous behavior, increasing the value of differentiating 
functionality is accomplished by focusing on those aspects that drive value to the customer and 
these may be unexpected. For instance, in many industrial systems, increasing the amount of 
autonomy and decreasing the need for operational support by humans is an important factor as 
it drives down cost. 
 
The top layer is the innovation and experimentation layer. This is where the company 
experiments with different innovative ideas in order to identify new future differentiation. 
Innovation pipelines such as the one in figure X focus on this layer of the model. Humans have 
an amazing capability to rationalize why certain ideas would be good or not good, but reality 
shows that we are not very good at predicting the success of innovative ideas. Consequently, 
around half of the features in a typical product are hardly, if ever, used. The purpose of the 
innovation and experimentation layer and the innovation funnel is to validate the relevance and 
potential value of innovative concepts through the measurement of customer behaviour rather 
than through customer interviews.  
 

 



Figure X. Innovation Funnel [Bosch et al 13] 
 
The goal of the innovation and experimentation layer is run as many experiments as possible 
against the lowest cost per experiment. As we are not good in predicting which concepts are the 
most valuable, we need to test many ideas and trust that we end up with a set of innovative 
concepts that resonates with customers and that drive future differentiation. The ability to rapidly 
test a concept requires us to build the realization of it as rapidly and easily as possible. 
Consequently, this requires that it can be built with as little integration in the existing product or 
system software as possible. Ideally, the idea can be realized on top of the product interface 
and only interact with the rest of the functionality through that interface. This significantly 
reduces the cost of implementation and simplifies the removal of the software associated with 
the innovative concept if it does not deliver the value that was expected. 
 
Although the concept of these layers is intuitive and easy to understand, it is important to realize 
that there is a time dimension to the 3LPM as well. Functionality flows downward through these 
layers. Thus a promising innovation concept starts its life in the top layer. Once it is validated 
and the customer value confirmed, it transitions to the differentiating functionality layer where 
the company focuses on maximizing the customer value and monetizing accordingly. Finally, 
once it starts to commoditize, the functionality flows to the bottom layer where the focus shifts to 
minimizing total cost of ownership. This notion of functionality moving through layers and the 
key priority of the R&D organization shifting for this chunk of functionality each time that it 
transitions is at the heart of 3LPM and for many the less obvious aspect of the model. 
 
The second main aspect of the 3LPM are the interfaces between three layers. The 3LPM can 
be used in a conceptual fashion, where components are mapped to the three layers, or it can be 
used as a concrete architecture where functionality physically moves between layers when it 
changes status. Although the functional decomposition of architectures can follow many paths, 
using a top-level decomposition using the 3LPM allows the company to adjust the organizational 
structure of R&D to follow the same principles. This, then, allows each team to focus on the 
primary driver for the layer that it is responsible for, i.e. minimize total cost of ownership, 
optimize the value to customers and maximize the number of experiments. Stable (not static) 
interfaces can then facilitate the decoupling between teams and the transition of functionality 
between layers. 
 
The 3LPM is has four primary uses. First, it can be used as a tool to assess the current state of 
the system architecture and the allocation of R&D resources as a means to control resource 
allocation. Second, it facilitates the definition of the desired state for a system and its 
architecture as well as and the development of a transition plan from current to desired state. 
Third, it provides a tool for describing the boundaries between platforms and systems built on 
top of those platforms. Finally, it helps an organization structure its engagement with the 
ecosystems around it by classifying functionality as internal and external, defining interfaces 
between the company and partners and the transition of functionality between these layers. The 
notion is that the company engages the innovation ecosystems around it to share the cost and 



risk of innovation, connects with companies offering complementing functionality in its 
differentiation ecosystem and that it partners with the commodity ecosystems to minimize the 
total cost of ownership of commodity functionality. The difference of ecosystem engagement 
around the differentiating layer as compared to the other two layers is that the differentiation 
ecosystem engagement tends to focus on complementing the functionality delivered by the 
company with that of other companies. For the other two layers, the focus is on the functionality 
delivered by the company itself. 

WKI: Unlocking the Internet of Things 
WeKonnektIT (WKI) is a 1000+ person company offering products, solutions and services for 
connecting devices of all types to the internet. The company has been going for more than 25 
years and was one of the earliest players that entered the machine to machine communication 
trend in the 1990s. As there initially were no technical solutions available for accomplishing 
connectivity, the company started of building its own hardware, protocols, software as well as 
mechanical solutions for deploying units out in the field. 
 
The company has operated for many years as a fully vertically integrated product and solution 
provider. Its customers would request connectivity and WKI would provide a turnkey solution 
including a subsystem to be added to the customer’s product or system, local routers to provide 
connectivity as well as data collection, analysis and reporting solutions. This allowed its 
customers to focus on what they were best at and WKI would solve everything else. 
 
This strategy has served the company well over most of its 25 years, allowing it to grow from a 
two person shop to a large company with a sizeable R&D department. During the last years, 
however, the first dark clouds have been appearing on the horizon. The competitive landscape 
has changed with many new entrants and a significant push by customers to standardize 
solutions, protocols, connectivity and platforms with the intent of allowing for more 
interchangeable solutions. With the emergence of the Big Data trend, followed a few years later 
by the Internet of Things trend, the comfortable niche market in which WKI has lived for many 
years has now turned into a global and highly competitive market. On the one hand, this is great 
as the number of potential customers and the size of the market is just exploding. On the other 
hand, the competitive landscape suddenly contains hundreds of players, new and old, and the 
company is trying to make sense of how to respond to this. 
 
The main challenge that the company meets is that its customers ask it for different 
deployments than the traditional turnkey solution. Sometimes it just wants the connectivity 
modules, sometimes customers ask for the data collection part. In other cases, WKI is asked to 
perform the integration of a complete solution but the solution is composed of non-WKI 
components. In short, although the company is customer-focused and wants to do right by the 
customer, it is clear that its current strategy is no longer working.  
 



The leadership team, especially David, the recently appointed CEO, Nathan, head of sales and 
business development, and Adam, CTO and leading the R&D efforts, have worked hard on 
creating a new strategy that will allow the company to meet the new market reality. The first step 
was to analyze the current situation and to get clear on the primary challenges that need to be 
met. The team identified three main issues: 

● From a turnkey solutions provider, the company needs to clearly separate where it 
provides standard products and where it offers services for the creation of customer 
solutions, integration of systems or even operational services. This will have 
organizational implications as it is difficult to focus on product development and service 
delivery with the same team. 

● After receiving dozens of requests for APIs that would allow other companies to build 
solutions on top of the WKI systems, it is clear that the company needs to get serious 
about a platform that it can offer to third parties. Even though it would make it easier for 
others to integrate WKI based products into solutions, it also allows for third party app 
developers to enrich the solution space provided on top of WKI. 

● The team spent significant time analysing where the current R&D efforts are being spent 
and got to the unsettling conclusion that the vast majority of R&D resources was spent 
on maintaining and evolving proprietary hardware, communication protocols, driver 
software and other commodity solutions for which industry standards and accompanying 
products already exist. It is clear that WKI needs to free up its own resources from these 
activities if they hope to stay competitive in the future. 

 
Based on the analysis of these challenges, the company decides to kick off three teams, 
organized around each of the challenges and to ensure that there is governance by creating a 
governance team consisting of the leadership team and the team leads for the three teams. The 
teams receive the designations Team Liberation (freeing up resources from commodity 
functionality), Team 3rd Party (creating a platform API for third party developers) and Team New 
Growth (recommending a new business model and organization to deal with the changed 
competitive landscape). 
 
In the coming parts of the book, we will use the WKI case to illustrate the concepts that are 
introduced. Although it of course is a fictive case, it combines experiences and learnings from 
numerous companies that we have worked with in the past. As such, it represents an accurate 
representation of the situation at many companies. 

Part I: Controlling Resource Allocation 
In organizations that traditionally have treated all software as equal, there typically is little 
awareness across the organization where the R&D resources are allocated. Consequently, the 
first challenge that we need to address is to gain understanding of where resources are going. 
We use the 3LPM to assess the relative and absolute allocation of resources to commodity, 
differentiating and innovative functionality. Once we understand where resources currently are 



allocated, we can change allocation to constrain investment in commodity and focus resources 
on differentiation and innovation. 
 
In the following, we start by describing the process for current state assessment of the 
architecture and follow with an assessment of the R&D resource allocation. Then we discuss 
the desired state. The process for assessing current state consists of the following steps: 

● Categorize the architecture  
○ Classify functionality 
○ Assess intermingling 
○ Assess dependencies 

● Determine resource allocation 
● Summarize results and present conclusions 

 
Once the current state has been established, the next step is to define the desired state in terms 
of resource allocation and to define the actions required to realize the desired state. 

Current State Assessment: Architecture 
The current assessment of the software architecture starts with a first step where the 
functionality is categorized into the three different types. Then it assesses the intermingling of 
different categories of functionality and the complexity of the dependencies between these. 

Classify Functionality 
The first step that is required for us to make any progress is to categorize the functionality in the 
system. For this, we use the notion of a system element and assume that we can hierarchically 
break down system elements into smaller system elements. At this point, we are not concerned 
with the dependencies between these elements. We are decomposing the system until we 
reach a state where each of the leaf elements is cleanly categorized into one of three 
categories: commodity, differentiating and innovative. 
 
The process for categorizing the functionality in the system is recursive decomposition. First, we 
start with the system as a whole. We call it the top-level system element. This system element is 
then categorized as commodity, differentiating, innovative or mixed. 
 
If the system element is classified as mixed and can not be allocated to one category only, we 
break down the system element into smaller system elements and repeat the process for the 
new system elements. 
 
An important observation here is that the assessment of the categorization of functionality 
needs to originate from the customer or from a role that is intimately familiar with the customer, 
such as product management, sales and marketing roles. The reason for avoiding the situation 



where R&D is in charge of the assessment is that engineers tend to mark functionality as 
differentiating for a variety of reasons even though customers consider it to be commodity. 
 
Example: One of the main internal platforms at WKI is the connectivity module that is added to a 
client's product or system to provide basic functionality. The connection module consists of an 
electronics board, a hardware abstraction interface, a connectivity module, a data storage 
module, a data acquisition module, a data analytics module and a monitoring module. 
 
The main difference between WKI solutions and the new entrants is that WKI focuses on 
performing part of the data analytics on the connectivity module in order to communicate 
accumulated and analysed data as well as raise warnings and alarms more quickly. 
 
Applying the process of categorizing functionality shows that the connectivity module is entirely 
commodity. The challenge, however, is that it contains several proprietary protocols that were 
developed before the emergence of industry standards. WKI can not stop support of these 
protocols due to legacy deployments. However, currently the R&D organization is still investing 
significant resources into the module and there are numerous opportunities to decrease this. 
 
The monitoring module, on the other hand, is viewed as differentiating as it allows the company 
to offer “edge computing” solutions that facilitate monitoring, identification of anomalies as well 
as raising of warnings and alarms. The module is built such that algorithms for analysis can 
easily be embedded and the module offers a set of interfaces that are used by client projects. 
 
The data storage module is a mixed component as it on the one hand offers basic database 
functionality, but on the other hand it contains differentiating and innovative algorithms for 
deciding on deleting data, smart storage of aggregated data and selective storage of anomalous 
events. As the module is marked as mixed, we further decompose it into a database module, an 
analytics module and a smart storage module. The former is classified as commodity and the 
latter two as differentiating. 
 
As an observation, in our experience with different companies, it is clear that there are many 
approaches that architects use to present a high level view of the architecture. Therefore, we 
encourage companies to start from the model that is in place already. The two principles, 
though, that should really be enforced are (1) ensure that it is the customer’s voice that decides 
the classification of system elements and not the internal beliefs of the organization and (2) 
ensure that each leaf element is allocated completely to one category. There will be significant 
tendencies in the organization to compromise on these principles, but the value of using the 
3LPM for assessing resource allocation is by providing clear structure, numbers and insights. 

Assess Intermingling  
The result of the previous step is a hierarchical breakdown of the system into system elements 
where the leaves of the hierarchy are solely mapped to one of the three categories. Depending 



on the level of design erosion in the code, the challenge is that the leaf system elements may no 
longer relate to actual components or modules in the system, but rather to different code 
segments in the same file.  
 
Although we are not yet preparing any refactoring efforts, we are looking to assess the 
complexity of factoring out the functionality in different categories as we are looking to reach a 
point where each category is optimized for a different business metric. For innovative 
functionality, we want to make it as easy as possible to test different innovative ideas with 
customers. For differentiating functionality, the metric is concerned with maximizing business 
value, which often translates into supporting non-standard use cases, variation points and other 
mechanisms to allow for configuration and personalization. Finally, commodity functionality is 
concerned with minimizing total cost of ownership. We have to provide the functionality in this 
category, but want to do so at the lowest possible cost. If code is intermingled, it is impossible to 
optimize for the specific business metric. The result is that depending on the engineer or team 
working on that part of the system, it will be optimized for different metrics.  
 
There are different ways for assessing intermingling, but the process for assessing intermingling 
is a bottom-up process, starting at the leaf system elements. The first step is to identify the 
system elements of different types that are present in the same component or module. The 
reason is that for these system elements, there are no interfaces and any separation between 
these would require code refactoring and the introduction of new interfaces.  
 
The next step is to increase the abstraction level to system elements that are independent 
modules or components but that sit in the same higher-level system element while being of 
different types. As components within the same subsystem tend to have higher coupling than 
components in different subsystems, it is important to identify these components as a future 
refactoring to meet the requirements of the 3LPM would require these components to be 
decoupled. Decoupling often means the introduction of more abstract interfaces as well as the 
moving of code between components to reduce the need for interfaces. 
 
The process repeats itself up the hierarchy of system elements until the top level, i.e. the system 
itself, is reached. Each system element that is mixed should be marked with an indication of the 
relative prevalence of commodity, differentiation and innovation. At the top of the hierarchy, after 
iteratively marking its components, the system also receives an indication of the relative 
allocation of the three types of functionality. 
 
Note that at this stage, we are only recording the intermingling and not doing anything about it. 
However, as we move towards controlling resource allocation we can use our knowledge about 
the intermingling at different levels as a tool to ensure that, even though the functionality is not 
physically split into different components, we can still assess whether requests for new or 
changed functionality will predominantly affect commodity or other types of functionality inside 
system elements. If the requirement primarily affects commodity, the R&D organization can and 



should try to decline the request and if not successful aim to minimize the investment and 
amount of actual work. 
 
As an example from WKI: we already introduced the data storage module as a mixed 
component. On the one hand offers basic database functionality, but on the other hand it 
contains differentiating and innovative algorithms for deciding on deleting data, smart storage of 
aggregated data and selective storage of anomalous events. As we broke down the system 
element into conceptual modules, we identified a database module, an analytics module and a 
smart storage module. The former is classified as commodity and the latter two as 
differentiating. However, these conceptual modules are currently not separated into different 
system elements but part of the same source files. These files have been separated based on 
other principles than the 3LPM. 

Assess Dependencies 
Once we have categorized the components and modules of the system and assessed the 
intermingling of functionality, the next step is to assess the dependencies in the system. The 
reason for assessing dependencies is twofold. First, we need to establish the complexity of the 
dependencies between the different parts of the system as any future refactoring would need to 
focus on reducing these dependencies. Second, ideally commodity functionality only depends 
on other commodity functionality. Differentiating functionality depends only on other 
differentiating or commodity functionality. And, finally, innovative functionality can depend on the 
other types, but preferably less on other innovative functionality. 
 
The rationale for constraining dependencies to the restrictions mentioned above is that the 
3LPM seeks to organize functionality into three layers with defined interfaces between these. As 
is typical in layered architectures, higher level components can depend on lower level 
components, but not visa-versa. In addition, the reason for limiting dependencies between 
different types of innovative functionality is that this category of functionality is likely to be 
removed when customers do not appreciate the functionality and it does not deliver the 
expected value. In many cases, there is little consideration of removing functionality once it has 
been added to the system, but the fact is that functionality that, for whatever reason, does not 
deliver the expected benefits for the customer should be removed as soon as possible as the 
future total cost of ownership, due to increased complexity of the system itself as well as of the 
user interaction typically by far outweigh the cost of removing functionality soon after its 
introduction. In addition, waiting to remove obsolete functionality often causes other software to 
become dependent on this functionality, increasing the cost of removal over time. 
 
One of the challenges in some industries is that customers are very powerful and can demand 
functionality to remain in the system for their use, even if the rest of the customer base is 
affected negatively. To avoid this, the communication with the customer should clearly indicate 
that functionality labeled as innovative is not guaranteed to remain in the system. If the 
company decides to remove it and some customers are very much attached to this new 



functionality, it can be moved from the system to the customer-specific functionality that extends 
the system in similar ways as third party developers can build extensions to the system. That 
allows the company to keep the system clean while offering flexibility to customers. This 
interface can and perhaps even should be the same interface as the one between differentiating 
and innovative functionality. By doing so, it helps the company to maintain only one interface to 
external and internal partners seeking to extend the system. The architects in the R&D 
organization can then focus on ensuring the stability and expressiveness of the interface and to 
balance the two. Minimizing the number of interfaces to maintain and evolve tends to increase 
the quality and stability of the remaining ones. 
 
As this step is concerned with assessing current state, the main activity is to identify the 
dependencies and to mark the ones that are violating the principles that we discussed above. 
This will give an indication of the amount of effort required when seeking to refactor parts of the 
architecture. However, at this stage the main focus is on documenting and creating awareness 
of the violating dependencies. During the selection of functionality to allocate resources to, one 
of the considerations should be whether illegal or undesirable dependencies will be involved in 
the new development. If this is the case, the team should investigate what can be done to avoid 
increased future refactoring cost and whether it is possible to include some refactoring into the 
development efforts to achieve the same outcome while removing some of the technical debt. 
 
Example: At WKI, the team analysed the dependencies in the connection module and identified 
that there exist a number of intricate dependencies between the data acquisition module, the 
data analytics module and the monitoring module. As the data acquisition module is classified 
as commodity, the data analytics module is mixed and the monitoring module is differentiating, 
the team raises this as a concern. If the company would decide to re-architect the system 
following the 3LPM principles, these dependencies would need to be redesigned in order to 
ensure that the interfaces between these modules are sufficiently decoupled to allow for 
independent evolution. 

Current State Assessment: Resource Allocation 
Assessing resource allocation is a hard problem in most companies as the discussions around 
resources often take place in yearly budgeting processes with high-level follow-up during the 
year. This causes a situation where it is unclear where all the people in R&D are spending their 
time on. This frequently leads to confusing discussions between “the business side” and the 
R&D organization concerning the value added by the R&D organization of differentiating 
functionality and the number of new products created by the R&D organization. As in most 
organizations the vast majority of resources is allocated to commodity functionality, this is not a 
surprising state. However, often the R&D organization does not have a clear way of 
communicating the actual allocation of resources as it does not keep track of these at the level 
of detail required. 
 



As we now have a hierarchy of system elements to allocate resource estimates to, we first have 
to get clear on what approach to resource estimation we will use as there are several 
alternatives. First, we could collect the total amount of resources allocated to each system 
element since the inception of the system or the specific system element. Second, we can 
collect the specific amount of resources allocated during the current time period, for instance for 
the system release currently under development. Third, we could predict the amount of 
resources that we expect to see invested in the system element for the foreseeable future. 
Finally, if the organization into teams follows the component structure, the size of the teams 
associated with the various components will give a direct measure of resources allocated to 
each component. 
 
For the purpose intended here, we need to accept that resources allocated in the past are sunk 
cost and it is important to not fall in the trap of assuming that because something was expensive 
in the past, we should continue to invest in it. However, we can use the historical resource 
allocation as a predictor for the future and use it as a base estimate for the system element. 
Similarly, we can use the future predictions as a tool to increase or lower the base estimate. For 
instance, if it is clear that there will be significant new requirements affecting on part of the 
system, then the resource allocation estimate for the system elements in that part of the system 
should be increased. 
 
Before we can make resource estimates, we also have to establish the unit in which we will 
express the resource estimate as well as the time window that we employ. To start with the 
latter, the time window used in the effort estimation should be in line with the ability of the 
company to take action in terms of refactoring and shifts in resource allocation. For most 
companies, this means that the window should at least be six to twelve months, even though 
three months might work for smaller, more agile companies with significant freedom in their 
resource allocation. Once the time window has been selected, the next decision is to select the 
unit. It is easy to use an ordinal scale such as “low, medium, high”, but selecting an absolute 
scale allows for many more uses of the results of the current state assessment. The unit can be 
units of work, e.g. person hours, days, weeks or months, or a monetary unit, such as € or $. 
This means that the resource allocation estimate for a system element may be expressed as, for 
instance, 120 person days/year.  
 
Now that we have established the principles of resource allocation, it is important to realize that 
this requires estimation (or even guestimation) at most companies. The process for allocating 
resource allocation estimates to system elements is an iterative process, starting from those 
parts of the system where known numbers exist or at least can be estimated with a high degree 
of accuracy. Typically, there is an overall resource number available for the system as a whole. 
For larger subsystems that are allocated to specific organizational units, resource estimates are 
often easy to establish. Once the “easy” numbers have been allocated, the process becomes 
iterative, with a “down” activity and an “up” activity. The “down” activity starts from a non-leaf 
system element for which a resource allocation is available. Using the overall resource 
allocation, the action is to estimate the allocation to its constituent parts. Once this has been 



conducted for a part of the tree, the next step is the “up” activity. During the “up” activity, the 
bottom-up numbers are combined to verify that the sum of the bottom-up numbers aligns with 
the known numbers and, where missing, that the numbers at least look reasonable. The “down” 
and “up” activities are repeated until all system elements have received an estimate and the 
alignment between higher level and lower level estimates as well as horizontally between 
different subsystems has been verified. 
 
In cases where the individuals conducting estimations feel particularly uncertain, the estimates 
can be extended with a confidence level. In later stages, the confidence level can be used to 
determine when decisions need to be made. 
 
Example: WKI is a 1000+ person company, but it is very R&D heavy, meaning that two thirds of 
the staff work with R&D. Several of those work with customer projects, but around 400 people 
work on the products, components and modules that the company uses in its customer projects. 
When analysing the allocation of these 400 people, it showed that more than 340 people were 
working on commodity components. The reason for this is that the company built significant 
amounts of bespoke functionality during the time that there were no generic solutions available 
on the market. Over time, however, the situation has changed significantly and today many of 
the modules and components could be replaced by standard components available on the 
market against much lower prices than what WKI currently experiences in cost. The analysis 
clearly showed how, over time, the competitive position of the company started to be negatively 
affected. 

Current State Assessment: Summarizing the Results 
At this point, we have created a number of assets. The first is system element tree that shows a 
full breakdown of the system in its constituent parts. Depending on the size of the system and 
granularity that the assessment is conducted, this tree can match the system architecture, stop 
at a higher level of abstraction or, potentially, extend even deeper than the system architecture 
by breaking individual files into smaller parts. This system element tree not only captures the 
elements, but also classifies each element into it being commodity, differentiating, innovative or 
mixed. Mixed assets have a relative allocation to the three categories, calculated in a bottom up 
fashion. For instance, a component may be 70% commodity, 25% differentiating and 5% 
innovative. However, each leaf element will be allocated as purely being in one category. 
 
The second asset is an overview of the dependencies in the system. As decoupling and 
independent evolution of system elements go hand in hand, it is critical to manage interfaces 
and dependencies. This relates strongly to the management of architectural technical debt, 
even if this is not the focus of this book.  
 
The third asset is an overview of the estimated resources consumed by each part of the system. 
As we have classified the system elements, this allows us to calculate the relative and absolute 
allocation to commodity, differentiation and innovation.  



 
These three assets, when combined, provide us with information that we need for the next step 
in the process: shifting the resource allocation around to align it with the business strategy and 
to ensure maximum return on investment of the R&D budget. 

Controlling Resource Allocation 
When we started the work of assessing our resource allocation, we did not have accurate data 
on the relative allocation of R&D resources to the three categories of functionality, i.e. 
commodity, differentiating and innovative. The purpose of this first part of the book is to gain 
clarity on the resource allocation and the summary that we created in the previous section 
contains that insight. 
 
Understanding the current resource allocation is only the first step in the process. If your 
company is like most others, the vast majority - perhaps even 80-90% - of resources goes to 
commodity functionality. There are very good reasons to invest in commodity functionality: it 
helps to maintain existing revenue streams. Whenever there is an update to an operating 
system or some other software that the system depends on, maintenance will be required to 
bring the system up to date again. Because if we didn’t, we wouldn’t even be able to sell it! 
 
So, the goal is not to bring the investment in commodity functionality down to zero. However, we 
do need to realize the price that we are paying in terms of opportunity cost. Most companies 
calculate their R&D budget as a percentage of revenue. This budget is then allocated to various 
activities. We know that investing in commodity functionality has a low return on investment 
(RoI) as customers will not pay you for functionality that already exists and used to work. At the 
same time, the risk associated with the investment is very low. For differentiating functionality, 
the RoI is much higher, but at the same time the risk is higher too. We are extending 
functionality with additional use cases and enriching it in different ways that we think adds value 
to customers. However, we will only know if it really adds value and can be considered 
differentiating after it has been released and we get the feedback from customers. Finally, 
innovative functionality has the highest RoI but also the highest risk. In innovation communities, 
the rule of thumb is that 9 out of 10 ideas fail which is why we seek to test and validate as many 
ideas as possible against the lowest cost per idea. So, if the company does allocate 80-90% of 
resources to commodity, there is a significant underinvestment in differentiation and innovation 
and the resulting RoI is very low. 
 
As a general rule, our recommendation is to minimize investment in commodity to the lowest 
possible level. Then agree on a reasonable division between innovation and differentiation. 
Finally, based on the agreed division define the portfolio of R&D activities that optimizes the 
return on investment. 
 
In practice, however, our experience is that, for most companies, the ideal situation is too hard 
to accomplish in one step. So, we recommend that once the investment level in commodity 



functionality has been established, the first goal should be to cut that level in half. That means 
that if the result is that 80% of resources is allocated to commodity functionality, the first step 
should be to bring that down to 40% in the next resource allocation cycle. 
 
One mechanism that works well is to use the system element hierarchy. The simple rule is that 
for system elements that have been labeled as commodity, only bug fixes and updates driven 
by external causes, e.g. operating system upgrades, are allowed to be put on the backlog. 
Every other request for new development in commodity components will be declined. As 
implementing this often requires a significant change to the behaviours, norms and values in the 
organization, our experience is that an escalation mechanism is necessary for the cases where 
some in the organization feel very strongly that certain commodity functionality should be added 
and constructed. Simply using this mechanism in a principled fashion will result in a 50% 
reduction of resource allocation to commodity in the cases that we have used this approach. 
 
As part of planning the work to do in the next sprint, quarter or release, the new requirements 
and features requested by product management need to be evaluated and impact analysis 
needs to be conducted. If it shows that requested functionality requires changes and new 
development in components that have been classified as commodity, the requirement should be 
automatically rejected. 
 
Concluding, in this first part of the book, we have focused on identifying in more detail where our 
R&D resources are allocated with the intent of shifting a significant part from commodity 
functionality to differentiation and innovation. Using the mechanisms and approaches described 
here, even without any refactoring and using 3LPM just as a conceptual model applied to the 
current system architecture, we can achieve a major improvement in the effectiveness of our 
R&D efforts. In the next parts we expand on the basis that we built here by using 3LPM for 
complementing purposes that will further streamline the R&D function and deliver increased 
levels of effectiveness. 

Part II: Refactor Software 
The 3LPM has multiple application areas in addition to controlling resource allocation. In this 
part of the book, we discuss the refactoring of an existing software system using the 3LPM as a 
basic architectural style. One might wonder, however, why we would care about refactoring the 
system if so many benefits can already be achieved just by using the model as a conceptual 
one. The primary reason is that employing 3LPM in a system that is fundamentally structured 
differently requires an enormous amount of discipline in the organization that often is difficult to 
sustain over the long term. This is because many components will contain two or all types of 
functionality and ensuring that commodity functionality only receives the minimally required 
investment, such as bug fixes, is difficult. In addition, mixing innovative functionality with the 
other functionality in the system complicates its removal in the case that the customer value is 
not established.  



 
When we refactor the system to physically separate commodity, differentiating and innovative 
functionality and define interfaces between the layers, the principles underlying 3LPM become 
embedded in the architecture, processes and potentially even the organization. Rather than 
maintaining a high discipline level, abiding by the 3LPM principles would simply be part of the 
way we do things. In this part of the book, we describe the process of refactoring the software in 
your system according to the 3LPM. 
 
In the first part of the book, we already created three assets, i.e. the system element tree, the 
dependency graph and the intermingling of functionality types. These three assets, when 
combined, provide us with part of the information that we need for the refactoring process. The 
refactoring process uses these assets and then conducts additional steps: 

● Define desired state: This step is concerned with the formulation of the desired state for 
the system in terms of system structure, intermingling, dependencies, amount of 
commodity versus differentiating functionality as well as the allocation of resources. 

● Develop transition plan: The transition plan defines how we’re going to get from the 
current state to the desired state with clear steps, effort estimation, a time plan, 
prediction of observable benefits and building the mechanisms for tracking of the 
realization of these benefits. 

● Execute transition plan: The final step deals with actually realizing the plan. This is of 
course the hardest part as this is where the organization as a whole needs to commit 
and perform the actions to accomplish the refactoring. As refactoring does not always 
deliver immediate and easily recognizable business benefits, most organizations 
struggle with successfully completing these types of plans. 

 
In the remainder of this part of the book, we describe each of the steps in the refactoring 
process in more detail. 

Defining Desired State 
In this step, we create the same three assets as we developed in the previous phase, but now 
from an aspirational perspective: what should our system element tree, interfaces and 
intermingling as well as dependencies and the resource allocation look like in order to optimally 
deliver on the business strategy of the company. Thus, the goal here is to model the system 
from a perspective where the system is structured optimally from the perspective of the factors 
that we prioritize in the 3LPM. There are several factors associated with the system being 
optimally organized: 

● First, it is structured in a way that is as closely aligned with the categorization of 
functionality into commodity, differentiation and innovation as possible. 

● Second, system structure and interfaces between the 3LPM layers are aligned with the 
business strategy, meaning that the highest priority work can also be added the easiest 
to the system. 



● Third, it is organized such that it is easy to transition functionality from the differentiation 
layer to the commodity layer. 

 
As this point, it is important to realize that there are two “pure” approaches, the evolutionary and 
the revolutionary one. First, one can take the 3LPM architecture as a conceptual model, but 
keep the existing system architecture largely as it is. In this case, the functionality is labeled 
according to the 3LPM and the dependencies are labeled as “desired” or “obsolete” and the 
architects and development team can use this information during their development to avoid the 
system from becoming even more intermingled and to avoid dependencies that really should not 
be there. In addition, as every system requires a continuous investment in refactoring, the 
conceptual model gives the team guidance on the direction for refactoring. The evolutionary 
approach is the least effort consuming approach that already provides benefits. 
 
The second, more radical approach is to use the 3LPM as the physical top-level architecture 
and to define APIs between commodity and differentiation and between differentiation and 
innovation. This offers many more benefits, such as organizational alignment (a la BAPO model 
[reference]) so that each team (commodity, differentiation and innovation) has clear, but distinct 
goals to pursue. Also, it clearly marks transitions between different phases that functionality 
evolves through. Finally, it allows for clear control of resource allocation to different types of 
work. However, reaping these benefits also requires a significantly higher level of investment 
and a quite fundamental refactoring of the system. 
 
It should be noted that there is a third, hybrid approach where the evolutionary and radical 
approaches are combined. In practice, this means that the architecture is left intact in some 
parts of the system and organized according to the 3LPM in other areas. Although the purists 
among us will balk at this notion, there often are very good reasons why there is a need for a 
fundamental refactoring in one part of the system while leaving other parts alone. For instance, 
one part of the system may be affected by new and significant upcoming requirements and 
refactoring that part before incorporating these requirements may result in much lower overall 
cost and a significantly improved responsiveness in that part of the system. Meanwhile, a 
different part of the system may be poorly structured, but experience very little in terms of 
maintenance and evolution. In that case, the return on the investment required to refactor that 
part of the system will never be positive and hance refactoring should be avoided.  
 
In the remainder of this section, we will assume the radical approach as this has the most 
implications and is the approach that provides the most benefits if your organization can muster 
the resources. The remainder of this section is organized as follows. First, we put each element 
(chunk of functionality) that is purely allocated to one type in the associated layer. This means, 
among others, that for intermingled elements, different parts of a file end up in different layers. 
Second, we review the dependencies between different elements to provide an understanding 
of all the dependencies. This allows for a design where some dependencies are removed, some 
are combined into higher level, more abstract interfaces and some are maintained as they are. 



This then allows for the definition of the system level interfaces between innovation and 
differentiation layer and between differentiation and commodity layers. 

Allocate System Elements 
In the first phase, we broke the system into a hierarchy of system elements where the leaf 
elements are labelled as either commodity, differentiating or innovative. As such, the allocation 
of the leaf elements to the three layers of the 3LPM. However, it likely leads to a situation where 
functionality that in the current architecture is considered as belonging together is now divided 
over different layers. 
 
The above brings us to one of the key points to consider when defining the desired state. Every 
system has an architecture and even if it has eroded over time, there will still be a basic 
decomposition and set of fundamental architecture design decisions that has lead to the 
structure of the system as it exists today. When defining the desired state, it is important to 
realize that this might require revisiting several of the original design decisions in order to 
structure the system according to the 3LPM. This will initially feel unnatural and as going against 
the architecture, especially as many of the main components will be divided over two and 
potentially three layers. However, it is important to realize that the 3LPM is imposing a new 
architectural style on the system. One that is driven by the need to separate commodity from 
differentiating and innovative functionality and less driven by the traditional design principle of 
keeping related functionality together. This does not mean that we throw the principles of 
coupling and cohesion completely out of the window. Instead, we reinterpret these principles as 
functionality that is commodity should not be tightly coupled to differentiating functionality, even 
if these two logically belong together. Similarly, functionality that is innovative should not be 
combined with differentiating or commodity functionality. We add a time dimension to coupling 
and cohesion as well as introducing a new criteria to decide when functionality can or should be 
logically put together. 
 
Although the notion of defining the desired state is concerned with assigning functionality in the 
system elements to the three layers, this is not enough as the different chunks are just thrown 
together in the three buckets, but there is no architecture or design yet. In the next steps, we 
iteratively transition from assigning functionality to the three layers to a design that optimally 
captures the business strategy of the company. 

Review Architecture Design Decisions 
Once the different system elements have been allocated to the three layers, the next step is to 
understand the dependencies that exist between these elements. As part of this analysis, we 
have to understand that there are two types of dependencies. First, there are dependencies that 
are inherent in the problem domain. Two system elements simply need to be connected to 
exchange information, trigger actions or are in other ways dependent on each other. The only 
way to break this dependency is by re-architecting the design, meaning to either combine the 
system elements into one or to break up the functionality in the two system elements in two new 



system elements that do not depend on each other. These dependencies refer to the complexity 
of the problem domain. 
 
The second type of dependency is concerned with the complexity of the solution domain. These 
dependencies are not necessary for solving the “problem domain design” of the system, but 
occur due to the solution chosen by the original architects and designers of the system or, as is 
frequently the case, due to architecture erosion and the accumulation of technical debt. This 
means that these dependencies are a consequence of the solution domain and the erosion of 
the original solution that took place over time. This type of dependencies can be removed if the 
underlying architecture design decisions causing these dependencies are reconsidered.  
 
The basic structure of the system is due to the architecture design decisions that were taken 
during the initial design of the system as well as the decisions taken during the evolution of the 
system. At this stage we need to review these design decisions as we have applied a 
fundamentally different starting point for the design of the architecture, i.e. the 3LPM. This 
decision may have invalidated several of the earlier design decisions. 
 
There is one class of dependencies that are directly caused by the application of the 3LPM. As 
components are broken up and divided over the three layers, there is an immediate translation 
of the high cohesion that the well designed component has into a high degree of coupling. No 
matter where the decomposition happens, it will have this effect. To further complicate this, the 
3LPM asks that functionality is moved between layers when the functionality becomes 
differentiating and finally commodity. So, rather than thinking about functionality that is added to 
the system as something that needs to be massaged deeply into the component where it 
logically belongs to, we need to find ways where the functionality that logically belongs together 
can be moved, as a unit, between layers with minimal effects on the larger component and 
subsystem in which it lives. 
 
As we aim to define the desired architecture as a basis for transition planning, we need to keep 
a careful balance between starting from scratch and keeping part of the existing architecture. 
Starting from scratch would mean imposing the 3LPM on the categorized functionality and 
starting to take design decisions to structure the system again. Basically, this means doing a 
fundamental redesign of the system. Although this could be considered the most pure and 
perfect approach, the danger is that one ends up at an architecture that is significantly different 
from the current architecture but where the differences do not deliver significant business value. 
On the other hand, keeping part of the existing architecture will reduce effort during the 
transition phase, but risks leaving too much historical baggage in the system that no longer 
delivers value. As with many things in life, the right answer will be situation dependent and will 
require balancing the different pros and cons. 
 
The best approach to take depends on the specific situation and requires expert judgement from 
the architects and R&D leaders. However, there are a few factors to keep in mind, including 



dependencies, the ease of transitioning functionality over 3LPM layers and the conceptual 
integrity and simplicity of the architecture.  
 
The result from this step is three sets of design decisions: those design decisions that need to 
be removed from the system, the design decisions that will stay in the refactored system and, 
finally, design decisions that need to be added to the system. The latter category is required to 
replace removed decisions or to realize the principles underlying the 3LPM. The refactoring 
process that we will execute later on is, among others, concerned with realizing this new set of 
design decisions. 

Define Interfaces 
The final activity in the definition of the desired state is the definition of the interfaces in the 
system. The challenge is that we experience a two dimensional decomposition that seeks to 
optimize interfaces for two concerns. The primary concern is the separation between 
commodity, differentiating and innovative functionality. The intended benefit has been discussed 
extensively in the previous sections. However, this does require that functionality that logically 
belongs together still needs to be decomposed between these boundaries. Although this may 
seem strange, it is a very old mechanism in the world of software engineering as platforms have 
always required the separation of domain components over boundaries. Similarly, in software 
product lines, there is a similar split between the functionality in the domain assets and the 
application/product assets. 
 
The second dimension along which interfaces need to be defined is between different functional 
components of the architecture. Although this could be considered as regular architectural 
design, there are some challenges associated with combining a typically layered architecture 
with the 3LPM architectural style as there initially may be differentiating and innovative 
functionality in the lower layers of the architecture as well. However, as we define the desired 
state in this step, for every case where a component contains different types of functionality, it 
needs to be split and divided over the relevant layers. This requires that the new components 
will have a higher level of coupling as these originate from a single component. However, in 
practice the typical outcome is one where higher level components access higher level 
components and not the other way around. The reason for this is that the higher level 
components contain new, more innovative and differentiating functionality that will likely rely on 
older, commoditized functionality. This results in the normal situation where higher level layers 
call lower level layers. The other way around, commodity functionality needing to access 
differentiating or innovative functionality, is unlikely as the latter functionality did not exist when 
the former was written. 
 
An example of re-architecting a component is shown in  figure X below. The 3LPM principle 
applied to the architecture as a whole is recursively applied to the component. The majority of 
functionality tends to end up in the commodity layer. A little less in the differentiating layer and 
the least amount in the innovative functionality layer. The architecture rule that often works the 



best when re-architecting a component using these principles is the relaxed layered architecture 
style. In this case, a higher level component can call all layers below it and not just the layer 
immediately under it.  
 

 
FIgure X: Re-architecting a component containing three types of functionality 
 
As shown in figure X, we need interfaces defined between the new components that are stable 
over time while supporting the transitioning of functionality over boundaries downward. The 
intent of the interface definition activity is to ensure that the functionality ends up in the right 
layer while at the same time providing access to the necessary functionality across layers. The 
intent is to provide the intended separation and reduced coupling without introducing undue 
difficulties to access functionality that needs to be accessible. 
 
An additional concern to consider while designing interfaces is that functionality will transition 
between layers as innovations become important differentiators and differentiating functionality 
commoditizes. This is an important driver of interface evolution and interface evolution is an 
effort consuming activity that does not add business value directly, even if it is necessary for the 
long term health of the system. Designing a good interface requires a careful balance between 
generalization and semantic richness and the periodic transitioning of functionality adds a 
further challenge to the activity. The details of interface design go beyond the scope of this short 
book, but it is important to design interfaces such that it is easy to evolve them. 
 
Example: The team at WKI has divided its work into several activities. For the software 
architecture, the team has proposed an architecture where the commodity functionality is clearly 
separated from what the company assumes is differentiating. This includes its proprietary 
algorithms for early identification of issues and its edge computing functionality that allows for 
cost effective and resource efficient analytics. 
 



 
Figure X: The result of re-architecting the connectivity module 
 
In the figure above, the results of re-architecting the connectivity module are shown. Most of the 
components are classified as commodity and only two as differentiating. The two that are 
differentiating do contain commodity parts, but this is left for later analysis and work. Analysis of 
the implications of the architectural change, however, has shown that there are many hidden 
dependencies between the modules and components that need to be resolved as part of the 
re-architecting effort. Although the architects and R&D managers are surprised at this, the 
front-line engineers feel so some extent vindicated because they have been struggling with 
these dependencies for many years. Despite raising this as a concern repeatedly, it is only now 
that the technical leadership in the company is starting to see the reality of the situation. A great 
example of the power of transparency! 

Desired Resource Allocation 
In the current state assessment, we also assessed the resources that are applied to each layer 
of the architecture. In the definition of the desired state, we need to provide a perspective on the 
desired state of resource allocation, if only to provide an insight into the benefits that can be 
reaped after we complete the refactoring. 
 
The first response that we often receive when discussing this is: no resources to commodity! In 
an ideal world, it would be great if all the functionality that once has been created stays 
available and well integrated in the evolving system without any need for maintenance. 
However, in the real world, things don’t work that way. Software, once created, will always 
require some level of R&D investment to stay current. The question is how much we can limit 
that investment without losing the stability and reliability that we have come to expect from 
mature functionality. For most organizations, at least the answer is that it’s a lot lower than 
today’s level of investment. However, for the organization to accept that, it needs to inspect its 
own beliefs and behaviours when it comes to how it decides on R&D investments in the 



commodity layer. Many of these norms, values and behaviours have been hidden beneath the 
surface because the different types of functionality were so intertwined. As a general indication, 
the aim should be to lower the investment in commodity to at least half and preferably even a 
third of the original level. 
 
The other question is the relative division of resources between innovation and differentiation. 
For most organizations, part of the freed up resources should be allocated to innovation as this 
is very often deprioritized between keeping the existing software working and the demands from 
customers concerning the differentiation layer. However, the right division between innovation 
and differentiation depends on the industry and the state of the system. As a general indication, 
investment in innovation should constitute at least 10% of the overall R&D budget. In addition, 
the majority of R&D resources overall should be allocated to differentiation.  
 
Within these boundaries, the team conducting the work on establishing the desired state needs 
to set levels for each of the layers in the 3LPM that are defendable, but at the same time a 
significant deviation from the current state. When in doubt, it’s better to be more ambitious and 
aim higher as the translation of the desired state into an actual one will require compromises. In 
general, it’s better to aim for the stars with the hope of landing on the moon than it is to aim for 
the moon and realize that you may not even achieve escape velocity. 
 
Example: The leadership team at WKI already had concluded that of the 400 people working in 
product R&D, at least 340 were working on commodity functionality. Understanding the need 
and urgency of their situation, they make the decision that this number needs to be reduced with 
50%, meaning maximally 170 can work on adding functionality to commodity components and 
modules. The remaining 170 people are not all put on differentiation and innovation, but around 
half are put on refactoring the current software assets in accordance to the desired architecture 
that has been designed earlier in the process. 
 
Although this results in significant disruptions for everyone in R&D, including those working with 
customer projects, the leadership team communicates that radical changes are needed if the 
company expects to be around a few years from now. They have a loyal customer base, but 
their cost structure and the limited amount of differentiation offered to the market is simply 
unsustainable. 
 
In addition to the internal communication, the company tasks its account managers with 
informing their customers of the changes that are underway in the company. The intent is to 
convince customers that despite the short term pain, there will be significant benefits going 
forward that will benefit customers as much as WKI. 

Conclusion 
In this first step of the refactoring process, we have defined the desired state of the architecture 
of the system. This required us to allocate the system element tree that was the result from the 



current state analysis to the three layers. The resulting, often unappealing, structure addresses 
the challenge of intermingling functionality to some extent, but it does not address the challenge 
of undesirable and unwanted dependencies. To address this, we need to review the architecture 
design decisions underlying the original architecture and decide which ones to remove and 
replace and which new ones to impose on the system with the intent of aligning with the 3LPM 
principles. Once we have concluded this activity, we defined the interfaces in the architecture.  
 
Based on the desired architecture, we can define the desired resource allocation. Although it will 
be hard to define this in detail at this point, at least setting high-level boundaries will be really 
helpful. First, because it allows the organization to set a high and challenging ambition level, 
which often is required to get the company to rally behind the initiative. Second, because it will 
convince those not convinced that the potential benefits are significant and could materially 
change the competitive position of the company. 
 
The result of this step is a definition of the desired architecture and resource allocation. Rather 
than a platonic ideal, this architecture captures the optimal solution under the constraints that 
exist in the organization, including those imposed by the original architecture, the business 
strategy and activities that add business value and those that do not as well as the evolution of 
the categorization of functionality over time. The desired architecture defines the basis for 
transition planning which is discussed in the next section. Similarly, the desired resource 
allocation is not created in some kind of vacuum but seeks to combine the realities of the 
organization with a highly ambitious goal for the organization to reach. 

Transition Planning 
After all the effort expended on understanding the current state and defining the desired state, 
the real work starts: actually realizing the transition. This is where the rubber meets the road as 
talking is easy, but doing is hard. The current architecture, ways of working and organization 
have emerged as these represent a balance between different drivers and forces in the 
company and between the company and it’s suppliers and customers. Consequently, there 
tends to be significant resistance against the changes that realizing the 3LPM approach will 
entail. 
 
In order to overcome the organizational inertia, the transition plan should balance three drivers. 
The first, obvious, driver is the logical sequence of all the activities required. Some changes 
must be done before other changes because of technical or organizational constraints. Some 
changes are best done before other changes as this will lower the overall cost and expenditure, 
i.e. it’s more efficient to do changes in a certain order, even if it is possible to conduct the 
changes in another order. Finally, there are changes that are independent of each other and 
can largely be implemented without dependencies. 
 
The second driver is concerned with maximizing benefits and minimizing “pain” or organizational 
upheaval. This driver is concerned with prioritizing the changes that require little from the 



organization but that result in significant benefits early on in the change process in order to build 
momentum for the remainder of the change process. The challenge here is that sometimes 
changes need to be prioritized that offer a “wow” effect but have limited long term benefits for 
the company. 
 
The third driver addresses the need for stepping stones. Realizing the change in one swell 
swoop is typically not realistic, so the transition plan should break the change into a series of 
milestones that offer points of success and celebration during the transition and that allow for 
“sprints” of transition. Not only offer these milestones rallying points for those driving the 
change, once accomplished these points often provide anchoring points that ensure that the 
organization doesn’t easily slide back to the original starting point when there is some hiccup in 
the market, the company or the transition process. 
 
The remainder of this section consists of three main steps. First, we create an inventory of all 
the tasks that need to be conducted as well as the hard and soft dependencies between these. 
Second, we define a set of milestones that capture relevant accomplishments and create a 
transition plan following these milestones. Finally, we initiate a process where a detailed plan is 
generated for the first milestone. In addition, once the first milestone is approaching, detailed 
planning process should be initiated for achieving the subsequent milestones. 

Inventory of Tasks 
As a first step in transition planning, we need to create an overview of all the tasks that need to 
be conducted. For this, we have created the current and desired states of the architecture and 
system element trees as the gap between current and desired provides a clear starting point for 
identifying tasks. 
 
As the architecture consists of components, the typical starting point is to identify the work that 
needs to be conducted for each component. If the component is purely in one category, there is 
no work required. However, if it contains functionality from different categories, it needs to be 
split, refactored to decrease coupling and an interface between the two types of functionality 
needs to be defined. This means that for each component not squarely in one functionality 
category, there is a task of breaking it up. As discussed earlier, this requires among others 
assigning interfaces between the new components that minimize coupling between the 
commodity and differentiating functionality. 
 
The second main area is the set of architecture design decisions. During the definition of the 
desired state, we have identified the design decisions that need to be added and those that 
need to be removed. Design decisions have a structural effect on the architecture, but also add 
rules and constraints. This means that removing a design decision is not just concerned with 
removing the structural implications of the decision, but also undoing the effects of the rules and 
constraints that the design decision required. 
 



As an example, especially before the widespread use of real-time operating systems in 
embedded systems, many systems would use an application level scheduler. This component 
would call a specific function or method in every component that required some type of active 
process or thread-like behaviour. For this to work, every component would, at instantiation time, 
need to register itself at the scheduler. Then, as the scheduler calls every component in its list, 
the function that contains the active, periodic behaviour for each component would need to limit 
the amount of computing time it used in order to make sure that the overall cycle time for the 
scheduler stays within certain bounds. This might for instance require a component to break up 
its periodic computational task into multiple parts and to execute only one part each time it is 
called by the scheduler. The design decision to use an application level scheduler has a 
structural implication, the introduction of a scheduler component, but also several rules and 
constraints. Two important rules are (1) every component that wants to be active needs to 
register at the scheduler when it is created and (2) the component needs to implement a 
function or method with a specific name that the scheduler will call. Finally, there is a constraint 
that states that every function or method that is called periodically by the scheduler has to limit 
its execution time to a certain number of milliseconds in order to ensure a sufficiently high 
frequency of calling each component. 
 
When the team decides to replace the application level scheduler with an open source or 
commercial real-time operating system, which is a very typical strategy to reduce the amount of 
R&D resources allocated to commodity functionality, just removing the scheduler component 
would not be sufficient to remove the original design decision. It would also require the functions 
or methods that used to be called by the scheduler are converted into parallel threads or 
processes. As the operating system scheduler now functions preemptively, the constraint on 
limiting the execution time of each active function or method is no longer needed. 
 
This example illustrates that many architecture design decisions are not localized in nature but 
affect several, many or all components in the system. Consequently, removing or imposing a 
design decision often is quite an involved and effort demanding activity. Because of this, there 
are many examples of teams that got half-way in removing or replacing a design decision and 
that ended up with systems that are an amalgamation of old and new design decisions as well 
as glue to make the parts work together. Thus, as we are collecting the tasks required to 
transition from the current to the desired state, keeping all actions related to removing, replacing 
or adding a specific design decision should preferably be kept together as much as possible. 
 
The third area of focus is concerning the dependencies within the architecture. For most 
systems, over time dependencies develop between different parts of the system that really 
should not be connected to each other. Often this is a consequence of the accumulation of 
architecture technical debt and the organization underinvesting in managing this technical debt. 
When applying a major refactoring as when adopting the 3LPM, there will be a need to clean up 
the additional debt as well, resulting in a certain amount of piggybacking on the initiative. In 
many cases, this is concerned with dependency management. So, the action is to review all 
dependencies between components, both current and after the relevant components have been 



split up, and identify all the dependencies that violate the guidelines. For every violation, a task 
needs to be defined to resolve the unwanted dependency.  
 
Although the steps are presented here as sequential, one can actually start with each one. If the 
team is more focused on architecture, the best starting point would likely be the architecture 
design decisions. However, for many engineers, design decisions are a bit of a fuzzy and vague 
concept and their focus is on code. In that case, starting from the components is probably the 
better starting point.  

Milestones 
The typical refactoring initiative, especially one of the type we’re discussing here, where quite 
fundamental changes are introduced to an existing system, requires a significant amount of 
R&D resources of the right seniority to realize. As the refactoring effort occurs in parallel to the 
normal development of new functionality, delivery of products to customers, dealing with trouble 
reports from the field, etc. it is likely that the refactoring effort will require a significant amount of 
calendar time. Depending on the organization, the refactoring initiative may take several 
quarters or even several years. Most organization have difficulty to sustain a refactoring effort of 
such a long period of time. The danger is that in the middle of the refactoring, urgent events 
happen in the field or some critical customer demands immediate action that was not planned 
for, resulting in resources being taken off the refactoring effort. As refactoring is, in many ways, 
hard work that does not clearly deliver customer value in the short term (a major motivator for 
many engineers), the risk exists that refactoring efforts are abandoned in the middle of realizing 
an important change. In fact, it may result in the architecture ending up in a place worse than 
before the start of the refactoring as part of the system has been transformed and the rest of the 
system is still in the old structure.  
 
In our experience driving change at companies, one of the techniques that help to avoid the 
problems described above is to define milestones that can be reached with a focused and 
sustained effort, but that take a limited amount of time. Also, the milestone, if chosen well, will 
provide an anchoring point where the new architectural structures as well as the associated 
behaviours will hold and avoid the organization to slip back.  
 
The behavioural side of software development is important to realize. In all R&D organizations, 
there exists a culture where certain things are allowed and endorsed and others are frowned 
upon. Frequently this leads to a situation where there is a gap between the formal rules as 
defined by the architecture and the way developers follow or violate the rules. For instance, in 
some organizations, hero developers receive significant recognition for delivering complex 
functionality right before the deadline or fixing complicated problems in high pressure situations. 
At those points, all rules go out of the window as all the team wants to do is deliver the system. 
At this time, all kinds of dependencies between components get introduced that really should 
not exist according to the formal architecture. This is where architecture technical debt gets 
introduced that, over time, has enormously negative effects on the overall productivity of the 



R&D organization and it causes even more of the resources to be spent on commodity 
functionality. So, in a refactoring, the concern is not just with changing the structure of the 
architecture and the software, but also with changing the behaviours, norms and values of the 
R&D organization. When adopting the 3LPM, managing dependencies over the three layers of 
commodity, differentiation and innovation is extremely important if we want to reap the benefits. 
If we allow for the wrong types of dependencies to be introduced to the system, we are unable 
to control the R&D resources allocated to commodity and all our efforts are for naught. 
Introducing milestones allows us to define anchoring points that both deliver on the restructuring 
and on the behavioural change that is required in the R&D organization. 
 
It is difficult to provide generic advice to selecting the right milestones as systems are so unique, 
but there are a number of more general pieces of advice that we can provide. First, the number 
of milestones should be limited and the typical range is three to five, depending on the size of 
the system and the R&D organization. Second, the time period for until reaching a milestone 
should be limited to one or maximally two quarters. Maintaining focus and commitment in the 
organization for a change project without reaching a point of celebration is often difficult. Third, 
each milestone should spell out explicitly which structural changes as well as which behavioural 
changes we are aspiring to realize as well as the business benefit that is realized by it. Fourth, 
when reviewing the inventory of tasks, aim to start by selecting clusters of tasks that maximize 
the separation of commodity functionality against the lowest amount of work. The more 
commodity functionality can be put at the other side of an interface, the easier it is to gain 
insight into why R&D resources are still invested in adding and changing functionality at the 
“wrong” side of the interface. Finally, especially the first milestones should aim to also generate 
a few high-visibility outcomes that are intended to build the confidence in the organization that 
this initiative, that is stealing resources from customer projects left and right that could have 
resulted in real, short term value, is indeed delivering on the expected benefits. For all that we’re 
rational engineers, the fact is that humans are storytelling machines and the milestone planning 
needs to help everyone involved to tell an easy to understand and compelling story. 
 
Once we have defined the milestones, the next step is to allocate clusters of tasks to each 
milestones. As we discussed earlier, tasks are not independent of each other. Some require 
certain other tasks to have already been completed or will at least require much lower effort if 
done later in the sequence. This is why we use the notion of clusters of tasks, even though 
there are a number of types. One type of cluster contains tasks that either gravitate towards the 
same logical part of the system. As all these tasks affect the same component or set of 
components, it is often easier to find synergy between different tasks and in that way lower the 
overall R&D effort. The second type of cluster is concerned with adding or removing the 
implications of a cross-cutting architecture design decision. Although some design decisions 
mostly have a local effect, many introduce rules and constraints that require many or all 
components in the system to either support certain interfaces or protocols, behave in certain 
ways, etc. The second type of cluster combines all the tasks associated with removing or adding 
such an architecture decision with the intent of increasing efficiency by having to repeat the 
same set of actions repeatedly for several components. A third type of cluster often is 



concerned with creating the interface between differentiating and commodity functionality or 
between innovative and differentiating functionality. The design of these interfaces is hard as we 
on the one hand would like to have one clear and well defined interface and on the other hand, 
we have several vertical slices of functionality that falls in two or three categories and each of 
the vertical slices needs its own interface. Finally, depending on the type of system there might 
be other types of clusters. 
 
The intent of this step is to identify the three to five milestones that make up the set of actions 
required for adopting the 3LPM and properly separating commodity, differentiating and 
innovative functionality. Based on the milestones, we assign the clusters of tasks that we have 
identified to the relevant milestone. Once we have completed this activity, we can move to the 
next step which is concerned with the detailed planning of the tasks for the first milestone. 

Detailed Plan 
Once the set of tasks allocated to the first milestone is clear and agreed upon, we can start the 
detailed planning. As indicated earlier, the time period for executing towards a milestone should 
be one to two quarters as it is hard for an organization to maintain its focus for a longer period of 
time without achieving and celebrating some success. This means that a milestone will take 12 
to 24 weeks which means, assuming 3 week sprints, 4 to 8 sprints. 
 
Once the number of sprints is clear, we need to identify the teams that will be involved in 
working towards the milestone. Here, again, we have some choices to make. Either we select 
one or more teams to work with refactoring full time or we distribute the refactoring tasks over 
the backlogs of the different teams. If the organization uses component teams, obviously the 
refactoring tasks need to be allocated to the relevant teams. If the organization uses feature 
teams, it indeed is a choice. 
 
One factor to keep in mind is that during the time of refactoring and executing the set of tasks 
associated with the milestone, there will also be new development ongoing. The refactoring 
tasks obviously do not take place in a vacuum. So part of the choice of full time refactoring 
teams or distributing the load depends on the potential synergies that can be achieved by 
combining refactoring and new development activities. If these are significant, distributing the 
refactoring work over the teams and pairing it up with related new features can be very effective. 
The risk of course is that teams fail to prioritize refactoring tasks in their backlog and focus on 
new development. The consequence of that would be that the schedule starts slipping as tasks 
get pushed to later springs all the time. 
 
Based on the above, each task in the set needs to be allocated to a sprint. Once the tasks have 
been sequenced over the sprints, the tasks need to be allocated to teams. Although this is 
obvious, no plan survives contact with reality so there will be a need for constant adjustment 
and change. This includes leaving space at the end of the milestone period for tasks that 
slipped or work that turned out to be required but that was earlier not identified. 



Summarizing 
In this part of the book, we describe how to refactor the software based on the Three Layer 
Product Model. There are several reasons why companies are willing to undergo this effort. For 
instance, without clear architectural separation, it will be difficult for R&D organizations to 
systematically avoid investing in commodity. Also, once the interfaces between commodity, 
differentiating and innovative functionality have been defined, sets of teams can be allocated to 
each layer, allowing for a much easier controlling of resources and each set of teams knows 
what metric it is optimizing for. 
 
The first step in the process of refactoring the software to comply with the 3LPM architectural 
style is the definition of the desired state. This requires the allocation of system elements to the 
three layers, the careful review of design decisions to decide which need to be added and which 
need to be removed or replaced, the definition of the interfaces between the different layers and 
a high level decision on the desired resource allocation to each of the levels. Especially for 
commodity functionality it is hard to decide what a reasonable level of resource allocation is. So, 
as a rule of thumb we recommend to cut resources to the commodity layer at least to 50% of the 
original level. 
 
Once the desired state is clear, the next step is to identify all the tasks that are to be conducted, 
identify technical dependencies between the tasks (some things have to be done before other 
things) and prioritize the tasks. These tasks typically have the nature of refactoring efforts, such 
as changing the component structure, removing dependencies and introducing interfaces.  
 
However, there will be several other change activities that may include changes to the way the 
company sells its projects (e.g. restricting customers from requesting changes in the commodity 
layer), shifts in what the company does in-house and where it relies on its ecosystem partners 
(to be discussed later in the book), new processes surrounding R&D but involving other 
business functions to improve the alignment with business strategy and tactical opportunities as 
well as organizational changes, such as allocating a team to each layer of the 3LPM. The plan 
of course not only lists the set of required changes and tasks, but also provides insight into the 
required time and resources and provides a justification in terms of the expected observable 
benefits. Finally, each issue that needs to be refactored but that is the source of technical debt 
rather than a direct consequence of transitioning to 3LPM is the consequence of inappropriate 
norms and values in the organization. So, in addition to changing the structure through 
refactoring, part of the tasks need to be concerned with changing the norms, values, attitudes 
and behaviours of the engineers in the R&D organization. 
 
We recommend that the change effort is organized according to a number of milestones (3-5) 
and that achieving each milestone takes 1-2 quarters or, for 3 week sprints, 4-8 sprints. The 
goal is for each milestone to reach a point where the organization can celebrate and anchor 



what has been achieved so that we don’t slide back into bad behaviours and consequently bad 
architecture and bad code. 
 
Once the milestones are clear, we conduct detailed planning for the first milestone and, later, 
on, detailed planning for each subsequent milestone once the previous one is being finalized. 
The execution of the plan requires tracking of progress according to the plan, but also tracking 
of the realization of the expected benefits. For instance, an architecture refactoring effort may 
be prioritized as the expectation is that the lead time for new features will be significantly 
reduced. If the lead time does not decrease as the refactoring progresses, then this needs to be 
investigated, potentially leading to changes to the plan. 
 
Finally, once the refactoring according to 3LPM is reaching the later stages, one can consider to 
reorganize the R&D organization and to allocate sets of teams to each layer. Although this is not 
always suitable, it does provide effective ways to control resource allocation (the backlog for the 
teams just grows) and it ensures that each team knows what business metric it is optimizing for.  
 
In the next part, we discuss the implications of recursively applying the 3LPM and the use of 
platforms as a mechanism to reap even more benefits of using the 3LPM. 

Part III: Towards Platforms 
The notion of layering functionality according to the 3LPM principles is of course analogous to 
the notion of software platforms and software product lines. As we have discussed the 3LPM 
approach earlier in the book, the basic principle is separating the commodity layer and 
differentiating functionality layers from each other even though these are maintained and 
evolved within the same R&D organization. However, there are many situations where the 
functionality in commodity layer is useful for more than one system and R&D team. That 
requires an even further separation of the commodity layer from the differentiating functionality 
layer. In addition, it requires improvement of the stability of the interface between the two. In 
fact, in this case the commodity functionality layer becomes a platform for use inside the 
organization. 
 
Of course, the concept of platforms is far from a new idea. In fact is has been around half a 
century in software and even longer in other technology fields. Under the overall heading of 
software reuse, for decades the software engineering community has searched for the holy grail 
of reusing software with a low associated cost. Starting with reusable functions and then 
modules, followed by objects and frameworks, service oriented architectures and more recently 
microservices, we have seen a wide variety of more or less successful attempts at effective 
reuse of software assets. 
 
A software product line or platform approach is concerned with separating domain engineering 
from application engineering, which in our case translates to separating the commodity layer 



and differentiating functionality layer and assigning these to different R&D organizations residing 
in the same company. One can go one step further, towards the adoption of software 
ecosystems where the commodity, differentiation and innovation layers are separated and the 
R&D efforts occur in different organizations altogether. However, this is the focus of part IV. In 
this part, we focus on applying the 3LPM to an intra-organizational scope. 
 
One of the reasons that software product lines proved to be so successful in many companies is 
because they included more important dimensions of running a software-intensive company. 
Whereas other approaches predominantly focus on technology, software product lines address 
all four dimensions of the BAPO model. As shown in the figure below, the BAPO model starts 
from the business and business strategy. From this, the system architecture and technology 
choices need to be derived. The architecture of the system is then, in turn, used as a basis for 
define the processes, ways of working and tooling employed by the company. Finally, from this, 
the organizational structure and setup in terms of roles and responsibilities is derived. 
 

 
Figure X. The BAPO model 
 
Although it of course seldomly, if ever, happens that an organization starts from a pure 
greenfield approach, applying the model to establish desired state for the organization can be 
incredibly powerful as it allows one to establish what an organization perfectly aligned with the 
current or potentially new business strategy would need to look like. This can be applied to 
existing organizations as well. One of the benefits of applying the BAPO model in these cases is 
that it forces one to start from the business strategy and work your way through the implications. 
Without the use of the model, many companies start from the existing organization and focus on 
the minimal changes required in response to the forces that required them to revisit the 
organization. 
 
In the figure, it is clear that the main arrows flow from “B” to “O”. However, each arrow contains 
a smaller arrow pointing backwards. This smaller arrow indicates that the existing organization, 



processes, architectures and business strategy feed back into the model. When applying the 
BAPO model to an existing setup, the BAPO model should focus on the delta between desired 
and current state that is providing tangible and convincing business value and avoid proposing 
changes that would perhaps make sense in a greenfield approach but where the cost of 
changing an existing organization outweigh the accomplished benefits. 
 
The overall benefit of the BAPO model is that it forces organizations and their leaders to take a 
holistic approach and to avoid focusing on just one dimension. The second advantage is that it 
clearly shows that the organizational setup is the last dimension to address, after the other 
dimensions have been sorted out. In many reorganizations, the exact opposite happens: some 
senior manager decides on a reorg, proposes the new structure and appoints responsibles who 
then run around trying to figure out the process, ways of working and architectural implications. 
Very little attention is paid to the business and business strategy as the reorg is viewed as an 
internal event that has no implications outside the company. Of course, this is a fallacy as the 
boundary between the company and its ecosystem has much higher permeability than what 
many naively believe. 
 
In this third part of the book, we apply the 3LPM to an entire product line and perhaps a 
complete business unit or company, rather than to an individual system or product. As the size 
of the R&D organization and the need for decoupling is much larger, we need to introduce the 
notion of cascading 3LPMs. In that case, we have multiple 3LPMs and the commodity layer for 
a product matches with the differentiation layer of the 3LPM of the platform that it is built on. 
 
The notion of cascading 3LPMs has parallels to the concept of software product lines. However, 
there are material differences between the two approaches. In order to highlight those, we first 
present a brief introduction into software product lines and then introduce the concept of 
cascading 3LPMs and discuss the differences between the concepts. Subsequently we dive into 
applying the 3LPM model at the company level and for establishing platforms. 

Software Product Lines 
Software product lines (SPLs) emerged in the 1990s as an approach to software reuse that 
mimicked mechanical product lines. The approach separates between domain engineering and 
application engineering. Domain engineering is concerned with the creation and evolution of 
software assets that can be reused by multiple applications (or products) whereas application 
engineering is concerned with the derivation of applications (products) from these reusable 
assets. 
 
The intent is that the reusable assets are reused by multiple products, in order to amortize the 
cost of the asset, and to minimize the cost of reuse. As the products reusing the shared asset 
are different, their demands on the shared assets are different too and consequently, domain 
engineering has to focus on providing variation points where the behaviour of reusable assets 
can be adjusted to the specific needs of each product. The cost of reuse can be reduced by 



offering a set of variation points that is as small as possible for the required diversity in 
behaviour and yet sufficiently expressive to meet all the needs.  
 
Variation points are realized through the use of variability mechanisms. There is a variety of 
mechanisms available and a deep dive into these goes beyond the scope of this short book. 
However, mechanisms vary from selecting a variant out of a list of alternatives to extension 
points where the product (application) engineering team can write code to extend the behaviour 
of the domain asset with product specific functionality.  
 

 
Figure <X>: Simplified overview of a software product line 
 
As shown in the figure above, a software product line consists of a product line architecture, a 
set of reusable components and a set of products that can be derived from the architecture and 
reusable components. The set of reusable components can have multiple realizations for the 
same component in the product-line architecture. Also, these components can have been 
developed internally or be sourced from outside the company. Finally, each product can either 
follow the product line architecture, deviate from it slightly or deviate from it significantly. 
 
SPLs have proven to be very successful in many industrial deployments and have allowed 
companies to achieve business goals such as increased product portfolio diversity, common 
user experience across their product range or significantly reduced R&D spending. In fact, SPLs 
can be viewed as the first truly successful approach to intra-organizational reuse. One of the 
reasons is that SPLs address the most important dimensions for a software intensive company, 
as defined by the BAPO model. 
 
As there is no silver bullet, also SPLs have their set of challenges. When not being vigilant, the 
complexity of operating in an SPL context can easily get very high since teams that earlier were 



not dependent on each other now do become dependent. That can easily result in a web of 
dependencies that slows everyone down due to very high coordination cost. For instance, 
although it conceptually may seem logical to reuse a platform as a product team, the product 
team does add an important external dependency to their system. If the platform team 
frequently breaks the interface, either syntactically or semantically, the product team will 
experience significant overhead and see their system fail or break regularly, but entirely 
unpredictably, and through no fault of their own. Consequently, it is clear that the organization 
needs a significant level of maturity in its software engineering capability in order to reap the 
benefits of software product lines. 
 
One main challenge only partially addressed in SPLs is how one decides what to put in the 
platform and what should go in the products. The basic rule in SPLs is that functionality that is 
applicable to multiple products should be in the platform and functionality useful for one product 
should be in the product specific code. However, in practice the line is not as clear cut. For 
instance, the functionality used by some but not all products is sometimes better off in the 
product code and sometimes in the platform. Similarly, even code used by multiple products but 
under a high degree of evolution may still be better off in the product code as it will slow down 
the product teams to wait for the platform team to do its job. 
 
The 3LPM model provides a mechanism to decide on this in an effective fashion in alignment 
with the business strategy: if functionality is commodity, it should be in the platform. Otherwise, I 
should be in the product specific code. The interesting dilemma or concern that is raised in this 
context refers to efficiency: even if differentiating functionality has significant commonality 
between products, should it really still only sit in the product code? Does it make sense to not 
exploit the efficiency that could be reached by sharing the differentiating functionality between 
products? Our experience is that although there are exceptions, in almost all cases 
differentiating functionality will differ between products. The needs of customers in different 
product categories tend to be slightly or significantly different even if it looks similar or even 
identical at a high level. And, finally, that the goal of the teams should be to maximize the 
customer value for differentiating functionality and this typically requires deep customer 
understanding and the creation of several variants and alternative realizations of parts of the 
functionality as a mechanism for experimenting with maximizing customer value.  
 
The second reason for being careful with bringing differentiating functionality into the platform 
code is speed: software that is in full control of a product team will simply be easier to change, 
evolve and deploy than software that lives in the platform and where interaction and alignment 
between the platform and product teams. Most organizations recognize the importance of 
efficiency in software development and prioritize for it, but fail to identify the costs associated 
with the focus on efficiency, such as reduced speed of development. Especially in fast moving 
markets, organizations need to prioritize speed over efficiency. 
 
Concluding, although software product lines present the first software reuse concept that 
achieved significant success in industry, the 3LPM provides an additional perspective that helps 



organizations balance efficiency and speed for the areas where it matters. Identifying where it 
matters requires the inclusion of business strategy, product management and customer 
understanding. These areas have traditionally been outside the domain of R&D, but achieving 
the benefits promised by 3LPM requires the cross-functional alignment around these topics. In 
the next section, we introduce the notion of cascading 3LPMs as a mechanism to realize 
effective reuse. 

Cascading 3LPMs 
In the first parts of this short book, we have use the 3LPM for a single product and R&D 
organization. In the case of platforms, we are entering a situation where there are multiple 
software assets and R&D organizations. At this point, we need to recognize that each asset has 
its own 3LPM and the challenge in this situation is to align the 3LPMs of multiple software 
assets. In addition, the R&D teams responsible for these assets need to be aligned in order to 
ensure that the alignment between assets takes place in the way that is intended.  
 

 
Figure X: Illustrating relationship between product and platform 
 
In the figure above, we illustrate the relationship between a product and a platform. As the figure 
illustrates, the commodity layer of the product is aligned with the differentiation layer of the 
platform. The intent is, of course, for the platform to provide the commodity layer of the product 
so that the product R&D team can focus its energy on innovation and differentiation of the 
product. The platform team maintains a smaller innovation activity, which is concerned with 
preparing the platform for incorporating new functionality that currently is differentiating in the 
product, but that in the foreseeable future will commoditize and flow into the platform.  
 
As there typically are multiple products that are built on the same platform, the challenge for the 
platform team is to align the inflow of new functionality from the different products in order to 
harmonize the different realizations of similar functionality in such a way that the platform only 



holds one instance. One of the hardest challenges is to convince product teams to change their 
interface towards commoditizing functionality just so the platform organization can ensure that 
only one implementation of certain functionality exists. As this change in which the functionality 
is used typically adds zero business value, it is very hard to prioritize for product teams. And yet, 
if we don’t the overall R&D investment in commodity functionality increases again. 
 
In fact, if all products on top of a platform do not adhere to one interface, it will be impossible to 
over time replace the internal, proprietary implementation of functionality with one that is 
developed outside the company, either commercially or in open-source. And, in the end, that is 
the only way to remove all investment in maintenance of commodity functionality, short of 
stopping support for the functionality altogether.  
 

 
Figure <X>: Cascading 3LPMs 
 
We refer to this model as cascading 3LPMs as the company doesn’t need to stop with a single 
platform. As shown in the figure above, a software asset used at one level can again be built on 
top of another, more generic platform. Although the figure only shows two platforms, the pattern 
in itself is of course recursive and can be repeated many times. Also, it of course extends into 
software assets that have been developed outside the organization, but then we enter the 
ecosystem domain which is the subject of the next part of the book. 
 
The final perspective that we need to discuss in this section is illustrated in the figure below. In 
most organizations, the notion of a platform is presented as a single entity where all 
commoditizing functionality flows into. However, there are alternative approaches that one can 
employ. In the figure below, the product software is organized into four subsystems that each 
have their own 3LPM. Although not for all companies, a subsystem centric structure may 
simplify the reuse of individual, domain-specific platforms in other products. Also, it often 
simplifies replacing internally developed functionality with open-source alternatives or putting 
internally developed software in open-source to share the cost of maintenance with the 
community.  
 



 
Figure <X>: Subsystem specific 3LPMs 
 
Concluding, the main purpose of this section was to indicate that the 3LPM can be applied 
recursively, resulting in cascading 3LPMs. The commodity layer in the first 3LPM becomes the 
differentiating layer in the next 3LPM and so forth. As a second purpose, it is important to 
realize that although it’s easy to think of 3LPM as the model for platforms, it can also be applied 
in other ways, such as a subsystem specific or even component centric 3LPMs. Although we do 
not provide much detail about the detailed and precise implementation of this concept, based on 
experience, I can share that conceptually it is quite easy to understand and to translate to a 
concrete realization in most organizations. 

Using 3LPM For Platforms 
The 3LPM approach is of course quite similar software product lines and it has several parallels. 
However, there are a number of differences too in that the 3LPM is both more narrow and more 
broad than software product lines. The main differences are threefold. First, the 3LPM focuses 
more on the “B” and the “A” in the BAPO model whereas software product lines focus, by and 
large, more on the “P” and the “O”. Second, the 3LPM insists on real interfaces between the 
three layers whereas software product lines often have few constraints on the architecture. 
Third, and perhaps most important, the 3LPM enforces a discussion in the organization 
concerning differentiation and commodity. This discussion in itself is immensely powerful as it 
forces the organization to align itself around its key differentiators and treat everything else 
needing to be optimized for minimal cost of ownership. Below, we discuss each of these in more 
detail. 
 
Software product lines stress the difference between platform engineering and product (or 
application) engineering. As a consequence, the focus in software product lines tends to be on 



the process of development and alignment between product and platform engineering and on 
the organizational setup for this way of working. There will be a platform engineering team that 
aligns its development activities with the product or application teams with the intent of building 
the functionality required by product teams only once while allowing the product teams to focus 
on their specific applications and products.  
 
The 3LPM focuses on the business strategy of the organization and uses that to determine the 
boundary between differentiating functionality and commodity functionality. As we will discuss 
below, this is a really important point as it forces the company to make a choice about its 
differentiation and strategy and, in turn, to force the R&D organization to align itself around 
these choices. Once we get to the point of clarity and commitment around differentiation and 
commodity, the basic architecture can easily be derived from the business strategy as the 
functionality immediately can be allocated to the three layers. Once the functionality has been 
assigned to layers, interfaces need to be designed to allow for stability at the top level while 
allowing for autonomy of teams within the layers. 
 
From a process and organizational perspective, the basic principle behind 3LPM is to empower 
teams by decoupling their work from other teams. This is important for many reasons. The first 
is of course that teams that can conduct their work within a sprint without having to coordinate 
with other teams will have higher productivity and output when compared to teams that have to 
align, coordinate and meet with others on a continuous basis. The second reason is that teams 
in different layers have very different goals. Teams working on commodity are focused on 
reducing the total cost of ownership of functionality in that layer. There are many strategies for 
accomplishing this, but the typical steps include centralizing and standardizing. Centralizing this 
case means bringing together all the versions, variants and alternatives and to assign this 
functionality to a single team. The next step then can be to standardize, which means reducing 
the alternatives to, preferably, a single version or at least as few as possible in order to reduce 
maintenance cost. Assuming that commercial or open-source versions of part of the software 
are available, the functionality should be modularized with the intent of replacing bespoke 
functionality with external software. The goal of teams working in commodity should be to get rid 
of internally developed software where possible and to minimize the cost of maintenance on the 
remaining internally developed and maintained software. On the other hand, teams working on 
differentiation do the exact opposite: they work to maximize the value of differentiating 
functionality to customers. This often required the introduction of variants, alternative workflows 
and customization with the intent of increasing customer satisfaction. As the goals and priorities 
of these teams are so different, we should aim to minimize the dependencies and connections 
between them as much as possible. 
 
Experience shows that for the aforementioned to work well, it requires that the organization as a 
whole has a very good understanding of the classification of functionality and mechanisms to 
identify and decide when functionality flows from differentiation to commodity. Where feasible, 
the organization should have data driven mechanisms to determine this, rather than relying on 



human interpretation. The reason for this is that experience shows that companies view 
functionality to be differentiating far longer than their customers. 

Organizing for Cascading 3LPMs 
This part of the book is focused on cascading 3LPMs and the underlying assumption in the text 
has been that these 3LPMs are maintained and evolved by different organizational units. The 
reason to break R&D efforts into different organizational units is because of size, too many 
people working on a single piece of software, but more typically because some of these 3LPMs 
serve as platforms for multiple products or other software assets and consequently require an 
organization delivering the asset to multiple customers. So, in the figures that we showed earlier 
in this chapter, it is typical that each of the 3LPMs belongs to a separate organizational unit. 
 
Although the concept of cascading 3LPMs is conceptually easy to understand, actually realizing 
this in an organization is not trivial and requires some elaboration. Successfully employing the 
concept of 3LPM at the organizational level, requires efforts at multiple levels. The three levels 
that need to be considered as a minimum are the organizational level, the 3LPM level and the 
layer level. Let us consider a set of three cascading 3LPMs with two 3LPMs at the top level (for 
instance two product teams building building on the 2nd level 3LPM and two platforms building 
on the base 3LPM. In the figure below, we visualize this setup. 
 

 
Figure X. An example cascading 3LPM setup 
 
From the figure, it is obvious that there are three scopes of operating in this structure. First, 
there is a need to explore the scope where all 3LPMs are considered. One could refer to this as 
the portfolio level. The next level is to treat each 3LPM as its own entity. At this level, the main 
concerns are to coordinate between the different layers and to align with the other layers that 
are in parallel to the current layer. Finally, there is the level of the individual layer where there 
also is need to coordinate with the other layers as well as internal work. 
 



Although the specifics of the work on each scope has a different target, the activities are quite 
similar for each scope. The main activities are concerned with roadmap and backlog 
management, interface management, variant management, coordinating upstream work and 
resource allocation. Below, we discuss each of these activities in more detail. 
 
Example: At WKI, it has become clear that its electronics board and hardware abstraction layer 
are commodity. At the same time, however, for a variety of reasons, including intellectual 
property, the company is unable to outsource this development. After extensive deliberation, the 
company decides to start a small development site in Vietnam that will be responsible for these 
two components. 
 
The decision has three major implications. First, even considering the communication overhead, 
time zone difference and other inefficiencies, the estimated cost savings will exceed 50% if not 
more. Second, although the architects at WKI talk about decoupling and interfaces continuously, 
the culture in the company is that dependencies, hidden or public, appear all the time as 
developers, often with the blessing of their peers, introduce shortcuts to gain short-term speed, 
but at the expense of introducing additional technical debt. With the hardware team no longer 
co-located with the software R&D, the company finally needs to take interface management 
serious, at least between the hardware abstraction layer and the rest of the software. 
 
The final implication is the signalling function that this decision sends throughout the company. 
All this talk about commodity, reducing R&D investment into commodity, etc. suddenly becomes 
real when people jobs, positions, team structure, etc. change. Everyone understands that the 
company is serious about these changes causing a transformation in how people talk about 
value, return on investment of R&D activities, etc. 

Roadmap and Backlog Management 
The first activity is roadmap and backlog management. At each level, the responsible team or 
organization needs to have an roadmap and a backlog to plan and prioritize work. The roadmap 
should be driven by strategic needs of the company as a whole, but the focus of each area is 
driven by the scope addressed. 
 
For the portfolio level, the roadmap and backlog are concerned with the work that realizes the 
business strategy for the company. Overall, the business strategy may be concerned with 
introducing new products, extending existing products with features as well as optimizing 
features already deployed in the field. As we are looking to, on the one hand, offer long(er) term 
commitments and, on the other hand, want to ensure business agility, the roadmap work needs 
to be organized such that items with specific deadlines associated with them should not 
constitute more than 30% (or max 50%) of the available R&D resources.  
 
As we are looking to work in an agile fashion, we need to derive a backlog for the portfolio level 
that can be used by the products and 3LPMs to create their roadmaps and backlogs. The 



difference between the roadmap and the backlog, however, is that the roadmap is proactively 
looking into the future and puts stakes in the ground with respect to major milestones for the 
company. The backlog is filled using a pull based approach where the organization limits the 
amount of work on the backlog to a period limited to one or two sprints. 

Interface Management 
Independent of the level at which one sets the focus, over time functionality will flow over layer 
boundaries. This may be entirely new functionality for a platform that is added after 
commoditizing at the product level or it can be differentiating functionality that now transitions in 
the commodity layer. As functionality moves between layers, there is a need to adjust interfaces 
as functionality that could be called directly as it sat in the same layer now needs to be 
accessed through an inter-layer interface. 
 
Although the introduction of interfaces may seem like a hassle, the whole point of software 
engineering is to find appropriate points of decoupling in order to manage complexity. 
Functionality that is commoditizing should be decoupled from differentiating functionality as it 
provides the most effective mechanism to ensure proper resource allocation. If the layers also 
are assigned to different organizational units, the presence of an interface is even more 
important. Teams and organizational units can coordinate through architecture or through 
process. Process means meetings and other time wasting human-driven coordination 
processes. Coordinating through architecture means that each team or organizational unit can 
operate independently at its side of the interface.  
 
As functionality moves, the interface between layers needs to evolve to provide access to the 
new functionality. As this evolution takes place, it may also offer the opportunity to simplify and 
reduce the size of the interface by removing or reducing access to even older functionality. This 
means that the new interface may introduce binary breaks as compared to the old interface. In 
order to avoid deep coordination between the teams at each side of the interface, the 
recommendation is to use the typical interface management mechanisms as, for instance, found 
in the Java community. This means that when introducing a new interface, the old interface is 
maintained for a while but marked as deprecated. During the time that the interface is 
deprecated, but available the teams relying on the interface can change their code to evolve to 
the new interface. Once all teams have moved on, typically after one or a few sprints, the old 
interface can be removed together the associated, now obsolete, code. 
 
The responsibility for the interface is with the team or organization that is providing it. However, 
the architects have a responsibility to ask for advice from the teams using the interface and to 
inform these teams of their decisions and the rationale behind these decisions. As is typical in 
empowered organizations, asking for advice is obligatory, but following the advice is not. This 
means that the architects can decide to ignore some of the advice that they have received. 
 



Finally, there often is a tendency to only add to the interface and to never remove anything. 
There always is some team that still uses some old functionality and it’s easier for the team 
maintaining the interface and the software in the layer below it to not change anything that used 
to work. Over time, however, this creates an increasingly complicated and large software asset 
and the very reason for introducing the 3LPM gets violated inside the layer itself. It is the 
responsibility of the team to constantly seek to narrow the interface that it offers to others. 
Interfaces offer one of the most powerful decoupling mechanisms and should be used 
accordingly. 

Variant Management 
The third area that requires focus is managing the variants present for functionality in the 
system. During innovation, the focus is on minimal viable (or loveable) features and functionality 
to confirm customer relevance against the lowest amount of effort from the company. However, 
once it is confirmed that some new functionality resonates with customers, it enters the 
differentiation layer and the focus shifts to maximizing the amount of value that can be delivered 
to customers. This frequently includes the introduction of variants and alternatives for specific 
customer segments and occasionally even specific customers. Once functionality starts to 
commoditize, though, the aim should be to reduce the amount of variants and bring this down to 
the smallest possible number (preferably only one). 
 
Although this is simple to describe conceptually, experience shows that companies often 
experience significant difficulty in actually realizing the reduction of variants. The consequence 
is vast numbers of non-value adding variants present in the commodity layers of the software 
stack. The problem of this is not just complexity, but also the amount of alternative 
configurations, the increased likelihood of faults and errors found post-deployment because of 
the company’s inability to test all configurations out in the field and, consequently, the constantly 
increasing need for R&D resources for commodity functionality. 
 
The only solution to this challenge is to reduce the number of available variants once 
functionality starts to commoditize. This often involves difficult discussions with other teams and 
organizational units as well as the customers of the company. However, shying away from this 
hard work will result in a much worse situation. Ideally, as functionality flows down through the 
product and platform layers, the number of variants should be reduced until there is only one 
realization of the functionality. Subsequently, the functionality should be structured and 
refactored with the intent of replacing internally developed functionality with open-source or 
commercial off-the-shelf software or, if possible, removing the functionality from the system 
completely. 
 
Although the removal of variants can be conducted at all times, especially the transitioning of 
functionality over layer boundaries provides a particularly suitable point in time to drive this 
discussion. This means that it can be coordinated with interface management and the 



coordination of upstream work, discussed below, in order to achieve step function 
improvements of R&D effectiveness. 

Coordinating Upstream Work 
All of the activities that we have discussed so far do not just affect the team or organizational 
unit managing a certain layer, but also have implications on the teams and units “upstream”, 
meaning the teams that are dependent on the layer in question. This upstream work can relate 
to changing interfaces, removed variants or changed functionality for the same area.  
 
As we’ll discuss in the next section, each team or organizational unit has a certain amount of 
resources allocated to it and consequently, changes affecting this team or unit need to be 
coordinated as there is a limit to the absorption capacity for every organization. Although we 
earlier discussed the limitations of doing this coordination through processes, it is typically 
unavoidable to use human based decision making and prioritization and hence this work needs 
to be included in the roadmapping and backlog activities. 
 
In some cases, there is a situation where all teams but one are able to transition to the new 
interfaces and reduced variants. In this situation, the one team can negotiate with the team 
providing the layer to maintain a deprecated interface for a longer period than usual so that the 
team has more time to complete the transformation. Although this may sometimes be 
necessary, it is important to note that this is akin to borrowing from the future as the team may 
earn a bit of efficiency in the short term, but at the expense of the platform team as well as itself 
as the future transition often requires more effort. 

Resource Allocation 
At the portfolio level, the goal of resource allocation is to maximize the overall return on 
investment on the R&D resources allocated by the company. This means that at this level, the 
team needs to decide on the best allocation of resources between products and the different 
3LPMs. This, obviously, needs careful balancing but also allows for explicit management of the 
resource allocation between innovation, differentiation and commodity at the portfolio level. As a 
rule of thumb, it is desirable to allocate at least 10% on innovation and to maximize the 
investment in differentiation. Especially early in the adoption of 3LPM, a good rule of thumb is to 
seek a 50/50 division of resources between differentiation and commodity. Even if an even more 
aggressive shift towards differentiation is often required and even strategically necessary, the 
shift from a 80% investment in commodity to a 40% investment often involves a significant 
change process in and of itself. Achieving this milestone before proceeding to more aggressive 
goals is often advisable. 
 
In a cascading 3LPM context with multiple products and 3LPMs, resource allocation depends on 
the specific context. However, the basic premise should be that the 3LPMs exist to optimally 
support the revenue generating products, services and solutions and that the majority of 
resources should be pushed to higher levels in the organization. There are counter-forces that 



need to be considered, though. In the situation where certain types of new, differentiating 
functionality can be introduced for all products at once, it may be justified to introduce this in the 
3LPM layer that serves all these products. Similarly, when the organization is moving towards 
automatically deriving products from a common platform, more effort may be required on the 
platform level. These situations justify a higher investment into lower layers of the software. 

Part IV: Engaging the Ecosystem 
The late 18th and early 19th century saw a development that was novel for society: the 
emergence of large organizations with thousands, tens of thousands or even more than a 
hundred thousand employees. Adam Smith and his book “The Wealth of Nations” is often 
quoted in this context as it describes how specialization by workers allows for significant 
increases in productivity, which in turn allows large companies to be much more efficient than 
the prevailing cottage industries of the time.  
 
During the 1930s the first research started to appear that sought to explain in more detail why 
large companies are so much more effective and the prominent theory that is still in sway today 
is transaction cost theory. This theory attributes the emergence of large organizations to the 
observation that the cost of transactions within an organization is lower than the cost between 
organizations. So, even though there are cost within the company, the larger firm still has a 
significant cost advantage as compared to smaller companies. As long as the internal cost are 
lower than the external cost, the company will continue to grow as there is an advantage of 
doing so. 
 
Over the last decades, however, there have been many developments that allow for a 
significant reduction in the cross-company coordination cost. Starting with phones, then fax 
machines followed by email and then standardization and automation of many business 
processes, it become increasingly cost effective to coordinate work across boundaries both 
inside and outside organizations. The largest effect, however, was on the cross-company 
transaction cost. This lead to the enormous wave of outsourcing that we’ve seen since the 
1980s.  
 
Initially, partners were selected through an elaborate, laborious process and once a partner had 
been selected to play a certain role, a standardized interface and service level agreements 
(SLAs) were defined and the partner would maintain its position for a long time. This worked 
because the partner selection focus was on operational processes that were highly 
standardized. 
 
Now we see that companies increasingly focus on partnering around R&D and innovation. As 
these processes are much less standardized and predictable, the interface between companies 
and their ecosystem partners needs to shift as well. The transactional model where partners get 
paid for each delivered service or item within agreed SLA levels needs to be replaced with 



alternative business models. These models can range from cost-based approaches where the 
company pays for the actual cost of staff at a partner with an overhead margin on top to 
revenue share models where the partner takes as much business risk as the company. 
 
Although traditional partner selection was slow, laborious and long-term, we see an alternative 
model developing where organizations operate in a network of partners. For each project or 
task, a constellation of these partners is put together that is uniquely suited to perform the 
activity optimally, be it from a cost, quality or user satisfaction perspective. The role of the 
network is to define a set of rules that allows for very efficient agreement on terms and 
conditions. This drives down the cost of “transacting” in the network, allowing groups of smaller 
companies to operate on par and over time significantly more efficient than large companies. 
 
This brings us to the notion of business ecosystems. These partner networks can, of course, be 
described much more accurately described as business ecosystems. In 1993, Moore [Moore 93] 
defined a business ecosystem as an “economic community supported by a foundation of 
interacting organizations and individuals, which can also be perceived as organisms of the 
business world”. This ecosystem has three main characteristics. First, there is a symbiotic 
relationship between the partners. This means that the partners should all benefit from being 
part of the ecosystem and be better off than if they would be outside it. Second, the members of 
the ecosystem co-evolve, meaning that when one partner adds to its capabilities, others evolve 
to make use of these capabilities. The constant evolution by all partners and the dynamic 
adjustment by all partners within the ecosystem allows the ecosystem as a whole to innovate 
faster than individual organizations. Finally, a business ecosystem is organized around a 
platform. As a software engineer, it’s easy to think about a software platform, such as a Linux, 
iOS or Android, but the type of platform depends on the industry. It can also be a set of standard 
services, agreed upon legal agreements or an open innovation platform orchestrated by a large 
company. 

The Challenge of R&D Ecosystems 
If we switch perspective from the macro - how does an ecosystem operate - to the micro - how 
should I, as a company, operate in an ecosystem, it turns out that there is surprisingly little 
guidance on how to organize a company’s R&D efforts in the context of an ecosystem. The 
business side of the company is eager to repeat the efficiency improvements of outsourcing in 
the context of R&D as well. Within R&D, this frequently results in decisions being taken to 
engage partners in R&D in a rather ad-hoc or tactical fashion. This results in less than optimal 
and even counter productive partnering decisions. 
 
The purpose of this part of the book is to provide a hands-on guide and framework on 
strategically engaging with the ecosystems around your organization. As we discussed in the 
previous section, the world is moving towards networks and ecosystems as these provide 
significant benefits over doing everything inside the company. Although each company will work 
hard on hiring the best, smartest and most talented workforce, the fact remains that even for the 



largest companies, to paraphrase Bill Joy, one of the founders of Sun Microsystems, more than 
99.9% of all the smart people in the world do not work for your company. Engaging with the 
ecosystems allows the company to dynamically partner with those that are the best for each 
particular activity where it’s own people would be second rate at best. Hence, R&D in the 21st 
century will to a large extent be driving by its ability to connect to the best ecosystem partners 
where it matters and to provide world-class R&D where work should be done internally.  
 
Before moving towards our framework and approach, we first need to discuss how companies 
conduct internal R&D and what the key challenges are. As we have discussed throughout this 
book, the primary challenge experienced by software-intensive systems companies is that over 
time, the amount of R&D resources allocated to commodity functionality tends to grow 
continuously. This results in low investment in innovation and differentiation. A simple 
categorization of functionality in a software-intensive system between commodity functionality 
and differentiating functionality. Commodity is those functions that you need for your product to 
work and satisfy the needs of your customers. However, no customer will select the product 
because of this functionality. As an example, customers will not select a new smartphone 
because of its ability to make a phone call. Everyone expects that the phone will have the ability 
to make calls, but this is not a differentiator as all smart phones have this capability. However, 
customers will be extremely upset if it turns out that a smartphone is incapable of making calls. 
 
Next to commodity functionality, the second category is differentiating functionality, which refers 
to capabilities that are unique and drive customer interest and buying behaviour. Differentiation 
can take many forms ranging from being first to market with new functionality, superior user 
experience, better integration between functions, etc. The important part is that differentiation is 
defined by customers and not by the company itself. It is customers whose buying behaviour is 
influenced and hence they are the yardstick to measure differentiation against. The challenge of 
differentiating functionality is that the moment customers show interest in unique and 
differentiating capabilities of a product, competitors will rapidly identify this and seek to emulate 
and deliver similar functionality in their products. The moment that the competition catches up, 
the functionality will transition to commodity. Of course, this is more of a gradual process that 
may occur over weeks, months or, in some industries, even years, but in the end, functionality 
that was once differentiating is now commodity.  
 
The primary challenge that many software intensive systems companies face is that over time, 
more and more of the total size of the software is dedicated to commodity functionality and less 
and less of the total size is differentiating. Although it is easy to think that commodity software is 
static, the fact is that all software requires maintenance for a wide variety of reasons, ranging 
from new regulation to new hardware architectures and from new versions of operating systems 
to new network protocols. With the amount of commodity functionality increasing, the relative 
percentage of resources allocated to commodity will automatically go up as well. The obvious 
implication is that fewer and fewer of the R&D resources are allocated to differentiating and 
innovative functionality. As long as all competitors are in the same situation, this does not hurt 
the competitive position of the company. However, with the increasing prevalence of startup 



companies in virtually any industry, the risk of disruption due to lack of innovation becomes too 
large to be ignored. 
 
A second challenge, a direct consequence of the above, is that the agility and ability of the 
company to rapidly respond to market changes and customer requests and experiment with 
innovative functionality becomes increasingly constrained over time. The constantly increasing 
size of the software in the systems that the company offers and the decreasing percentage of 
R&D available for differentiation results in a double edged sword where any request for agility is 
hampered both by the size of the system and the lack of available resources. Thus when 
competitors or new entrants make surprising moves that require a rapid response from the 
company, it is surprisingly difficult to even realize small extensions of functionality. This is 
exacerbated by the tendency of especially larger organizations to organize their R&D as a 
factory where the lifecycle of functionality from planning, development, validation to release is 
measured in quarters and years rather than weeks and months.  
 
A final challenge is that companies, unable to adjust their R&D, feel forced to take the radical 
step of wholesale replacing existing products and platforms with assets built from scratch. This 
is problematic as it, first, requires new products and platforms to reach feature parity before they 
can replace existing assets. Second, as the organization needs to maintain and evolve the 
existing assets while building their replacements, the R&D investment has a significant “peak”. 
Finally, building product and platform replacements from scratch has proven to be a high-risk 
activity with many companies failing to successfully accomplish the intended goal while wasting 
dozens if not hundreds of person years. 
 
We need a significant reinvention of the way we manage software assets and allocate R&D 
resources to these assets. Although we focused on internal initiatives that the company can 
undertake in the first three parts of the book, in this part we focus on engaging the software 
ecosystems surrounding the organization.  

Three Ecosystem Types  
In this part of the book, we focus on the ways in which a company can use its ecosystem to 
reduce investment in commodity and to focus its own resources on what is most differentiating 
to customers. The first step towards accomplishing this, however, is that we need to recognize 
that it’s not about a single ecosystem, but rather three types of ecosystems. Each layer of 3LPM 
has a separate type of ecosystem associated with it. Below we discuss each type of ecosystem 
in more detail.  

Innovation Ecosystem 
At the top of the 3LPM, we have the innovation layer. There is an ecosystem associated with 
innovation where the company partners with others in its ecosystem to collaboratively 



experiment with new functionality and ideas with the intent of delivering new, future 
differentiating functionality to market.  
 
As it pertains to innovation, the collaboration around innovation often concerns customers, 
suppliers and 3rd party developers complementing the core offering of the company. Typically, 
however, competitors are left out as the main focus of innovation is to find future differentiation.  
 
The main advantages of engaging the ecosystem for innovation are twofold. First, to reach a 
broader set of innovative ideas as employees of a company often experience a common view 
on the world whereas creativity and new insights often require alternative and even conflicting 
viewpoints. Second, it allows the company to share the cost of innovation with others so it won’t 
have to carry the burden by itself. This allows the company to test and validate more ideas and 
concepts as compared to the situation where it would seek to do everything by itself. 
 
There is one concern when opening up the innovation process and that is to ensure ownership 
or at least the ability for the company to capitalize on successful innovations. The best way to 
ensure this depends on the industry and context, but may include legal agreements, moving 
faster than others or other techniques.  

Differentiation Ecosystem 
The ecosystem around differentiating functionality is often more difficult to engage as the 
differentiating functionality gives the company its key revenue and pricing power. Consequently, 
organizations typically are highly restrictive in sharing differentiation with others. However, one 
typical situation where this is very effective, however, is where partnerships are formed with 
companies that provide complementing and non-competitive functionality. When such a 
partnership can provide a valuable offering to the customer by combining contributions from 
different companies, engaging the ecosystem may be particularly helpful. 
 
Extensions to serve niches and individual customers is a second area where companies may be 
open to sharing differentiation with partners. Especially for companies that serve mass markets, 
providing dedicated solutions for niches or customization for individual customers is not feasible 
as the company is geared towards serving bigger markets. Using third party development 
partners is then an effective strategy to ensure that all customers receive a suitable solution. 
 
The main use case, however, is when an innovation is developed collaboratively and then 
needs to become an important part of the differentiation layer. In this case, the company needs 
to find mechanisms to ensure access to and monetization of the differentiating functionality, 
even if a partner provides a critical part of the innovation. Different strategies are applied by 
companies, such as acquisition of partners or the technology, converting the partner into a 
supplier with strict contractual constraints, IP strategies that ensure exclusive access, etc. 



Commodity Ecosystem 
The final ecosystem is focused on the commodity layer. This is where we look to minimize the 
cost of ownership for providing the functionality that is required but does not contribute to 
differentiation. In this ecosystem, the focus is exclusively on reducing cost and resources that 
the company has to spend on the functionality and consequently the set of partners includes 
everyone who can contribute to this goal. This may include competitors and partners from 
different industries. 
 
Our research shows that companies use a variety of different strategies to involve the 
ecosystem in the provisioning of commodity functionality. However, it is also clear that 
companies typically wait too long with classifying functionality as commodity, resulting in a 
potentially significant opportunity cost and reduced competitiveness. 
 
It is important to point out, though, that even though functionality may be considered commodity 
for the company, other partners in the ecosystem may rightfully view this functionality as highly 
differentiating. Similar to the cascading 3LPMs described earlier, the same pattern can be seen 
over organizational boundaries. In the figure below, we illustrate how the cascading 3LPMs that 
we introduced in the previous part evolve into the three ecosystems that we discussed in this 
section. 
 

 
Figure X: From internal cascading 3LPMs to an ecosystem approach 

Engaging the Ecosystem 
In the previous section, we identified that the company is involved in not one, but at least three 
ecosystems. However, the way that the company engages with each ecosystem is similar in 
structure. The primary difference is the target of the ecosystem engagement. For the innovation 
ecosystem, the goal is to widen the innovation funnel and to share the cost of innovation. For 



the differentiation ecosystem, the goal is to maximize the value of the differentiating functionality 
by providing complementing functionality provided by others. Finally, the goal of the commodity 
ecosystem is to minimize total cost of ownership. Independent of the specific goal, the 
ecosystem engagement follows a number of similar steps: 

● Define strategy: Although the goal of the ecosystem engagement is clear, it often does 
not automatically translate into a clear strategy and set of actions to pursue. Hence, the 
first step has to be to develop a strategy that describes how the company seeks to 
accomplish the desired goal. 

● Assign resources: Even though it may seem obvious, experience shows that too many 
companies express a desire to engage the ecosystem, but then fail to allocate resources 
to make it happen. This may seem an obvious mistake, but if the decision maker is 
unable to understand him or herself what these resources should be doing concretely 
while at the same time several clear priorities are under-resourced, it becomes hard to 
allocate the people to this task. Instead some poor individual gets a small slice of his or 
her time reserved for this and is expected to deliver on the strategy. 

● Engage first partners: The first step in a new ecosystem engagement needs to be to 
engage the first partners in a directed, proactive fashion. In some cases, we’ve seen 
companies open up some part of their product or system by offering an API and expect 
the entire world to show up and use it. Often, unfortunately, what is happens is exactly 
nothing. The lesson is that for any company to engage its ecosystem, it will have to start 
by proactively reaching out to the first partners and working with them to learn what 
matters to partners and how to grow the engagement over time. 

● Quantitative tracking: As it easy to get stuck in some qualitative state of “this is going 
great”, experience shows that it is important to find mechanisms for ensuring ecosystem 
health without opinions or other human factors involved to color the data. That will allow 
us to identify concerns early, experiment with alternatives and iteratively improve 
engagement. The important factor here is that there has to be value exchange of some 
kind between the ecosystem partners. If there is no identifiable value exchanged or if the 
exchange is unbalanced, this rapidly results in deteriorating ecosystem health. 

● Scale engagement: Once the first partners, who are handpicked and directly engaged 
with, are up and running and the metrics that we selected to track ecosystem health are 
successful, the next step is to increase the engagement by adding additional partners to 
the ecosystem. It is important to note that during the initial phases, the hands-on and 
direct interaction with partners may seem very similar to traditional business 
development engagements. There is a fundamental difference, however: for business 
development, the engagement with a selected partner is the end goal whereas for 
ecosystem engagement, it is the starting point. Our goal is to reach a state where 
partners join the ecosystem of their own volition and to start adding value without a direct 
human-based engagement with the keystone partner. This requires various techniques 
and ways to automate processes. The good news is that the level of automation and 
associated investment required develops with the size of the ecosystem and, 
consequently, the total value created. 

 



In the sections below, we will discuss what the generic steps and activities outlined above 
translate into for each type of ecosystem. 

Innovation Ecosystem 
The innovation ecosystem is concerned with increasing the amount of innovation activities and 
broadening the innovation funnel through the use of innovation partners. Engaging ecosystem 
to drive innovation is not a new topic and has been around in different incarnations, such open 
innovation, collaborative innovation, customer-driven innovation, etc. Experience shows, 
however, that companies still have a strong tendency to be internally focused in their innovation 
activities. One of the key reasons is that most innovation resources are focused on improving 
product performance whereas many other types of innovation exist that often are ignored, but 
that are perhaps easier to conduct together with ecosystem partners. 
 
For the innovation ecosystem, the steps to engage the ecosystem play out as follows: 

● Define strategy: Although we already indicated that the goal of the innovation 
ecosystem is to broaden the funnel and share the cost of innovation, how to achieve this 
goal and where to start is not necessarily an easy challenge. Our experience shows that 
it typically is easier to start collaborative innovation activities in areas where the 
company does not necessarily considers itself an expert, but rather where opportunities 
exist to combine internal and external skills and expertise into a new area where the 
organization seeks to develop new business opportunities. In addition, the strategy 
should state explicit and quantitative goals that allow for tracking progress. The goals 
should initially be predominantly focused on the number of partners and only secondarily 
on the revenue generated. Over time, as the number of partners grows, these goals 
should shift towards revenue and value generated in the ecosystem. 

● Assign resources: No innovation, internal or external, will materialize without 
assignment of resources to the activity. Typically, there is a choice between allocation of 
centralized and full-time resources or decentralized, part-time resources. Google 
famously allocates 20% of everyone’s time to innovation activities and these activities 
can easily involve collaborative innovation activities. As both approaches have 
advantages and disadvantages, the preferred approach depends on the company. 
However, there typically needs to be some centralized support for partner management, 
agreements on intellectual property and similar topics. 

● Engage first partners: As we are looking to get to critical mass in some area of 
innovation with respect to ecosystem engagement, it is important to focus the selection 
of first partners in a specific area. Picking one partner per innovation area will complicate 
the scaling of the innovation initiative over time as the company does not build the 
capability to manage multiple partners that may be competing with each other in this 
stage. It will be the job of the company to reach out to potential innovation partners, to 
explain the rules of engagement and to agree on practicalities. As the outcome of 
innovation activities, that often are highly speculative and experimental, is typically 



difficult to predict, making precise agreements is hard. However, setting the ground rules 
is quite feasible. 

● Quantitative tracking: During the strategy development, quantitative goals have been 
formulated. Although these may evolve over time, it is important to track the progress 
towards these goals and to do so quantitatively. Especially in the area of innovation, 
there easily are a lot of smoke and mirrors and people passionately pleading for specific 
initiatives to be continued or stopped. The focus should be on running as many 
innovation experiments as possible and to shut down these when the data shows that 
the experiment does not offer the outcomes expected. This may be hard to realize when 
involving innovation partners, which is why agreement on ground rules is so important. 

● Scale engagement: Once we’ve found the best ways to engage innovation partners, 
scaling the engagement with the innovation ecosystem allows us to also scale the 
number of innovation experiments ongoing. The challenge is that many initiatives require 
someone from the company to be involved as it will be hard to capitalize on successful 
innovations otherwise. Of course, the most effective way to scale is by offering an API 
that the ecosystem can use, but again the more powerful the API, allowing for more 
interesting innovations, the more certification and validation of partners needs to take 
place in order to avoid abuse. Finally, it is important to realize that if the innovation 
ecosystem delivers on the desired metrics, it is OK for the scaling to demand resources. 
It means that the company will generate sufficient revenue from the innovations to 
warrant the investment. 

 
Example: At WKI, the monitoring module offers a mechanism for adding new algorithms easily 
to the module. This has been important for the company as different customers have different 
needs, data profiles and patterns that they are looking to identify.  
 
Although the company has mostly offered turn-key solutions to customers, over the years 
several customers have asked for ways to add their own algorithms to the monitoring module. 
Up to now, the company has declined this but instead offered consulting services to implement 
and add the customer-specific algorithms on behalf of the customer. 
 
With the emergence of ecosystems, the company decides that the time has come to change 
strategy. The interface between the monitoring module and the analytics algorithms has been 
firmed up to the point that an algorithm will run in a sandbox with little opportunity to affect the 
rest of the system. 
 
The company has now made the new interface available for some of their most advanced 
customers that are now building the first algorithms for operating in their own deployments. In 
addition, the company has started to discuss with some analytics companies specializing on the 
IoT domain to explore if there is an opportunity to create a marketplace for edge-computing 
analytics algorithms. 



Differentiation Ecosystem 
The differentiation ecosystem is concerned with maximizing the delivery of customer value. This 
can be achieved by internal means, as we have discussed earlier in the book, or by engaging 
the ecosystem. Engaging the ecosystem can be done in two ways. First, partners can engage 
with individual customers to maximize the value of the platform by customization and 
personalization. Second, we can engage with partners that offer solutions from other business 
domains that can be combined with our solution to deliver more value to customers through 
superior integration. For instance, in the financial services industry, partnerships with retailers 
are a proven strategy as both types of companies work with the same customers but offer very 
different services and are consequently not competing. 
 
Also for the differentiation ecosystem, the same steps to engage the ecosystem are of 
relevance and below we discuss in more detail how these best operate in the ecosystem: 

● Define strategy: The concept of using ecosystem partners to increase differentiation 
sounds really simple in theory, but realizing this in practice is a bit more involved. The 
first strategic question that needs to be answered is to decide what the key areas are 
where we seek to engage ecosystem partners. As discussed above, this can be focused 
on complementing solutions and services, on providing customization and 
personalization or on simplifying the integration of our offering in the customer’s 
infrastructure to ensure that the full value present is realized. Although one can decide to 
do everything at once, it is often better to sequence the steps to ensure that each part is 
delivering the expected outcomes. Part of the strategy needs to be the formulation of 
concrete, quantitative measures to track. The primary driver is, obviously, to drive 
revenue from the involvement of ecosystem partners. However, we likely need early 
indicator metrics such as the number of partners, the activity level of partners, customer 
success metrics, etc.  

● Assign resources: Defining the strategy is important as it helps us understand what 
internal resources to assign to engaging ecosystem partners. The challenge that some 
companies experience is that the team that is tasked with engaging ecosystem partners 
actually is in competition with these partners. For instance, the professional services 
team may be asked to engage with ecosystem partners to allow for easier onboarding of 
new customers. However, up to this point, this has been the responsibility of the 
professional services organization. These kinds of conflicts have to be managed 
carefully in order to ensure that the initiative is not torpedoed by internal strife. 

● Engage first partners: As the differentiation ecosystem is directly concerned with 
generating and maximizing revenue through value delivery to customers, engaging the 
first partners needs to be carefully planned as we are concerned with delivering real and 
tangible value to customers. Failure to deliver by ecosystem partners may easily reflect 
badly on the company itself. Consequently, agreeing on expectations, behaviors and 
responsibilities as well as finding ways to quantify can help, but cultural alignment 
between the first partners and the company goes a long way to avoid disappointments. 



● Quantitative tracking: As differentiating functionality is not just important for the 
company, but even more so for its customers, we need to track and find effective ways 
to quantify the ecosystem engagement, the ability of partners to deliver for customers as 
well as other metrics defined in the strategy. As long as the ecosystem engagement is 
small scale, qualitative evaluation by company staff will work reasonably well, but it fails 
to scale and hence we need to build these mechanisms before we start scaling. 

● Scale engagement: Finally, once we have found a repeatable mechanism to engage 
ecosystem partners, the next step is to scale this engagement and to find ways to 
streamline and where possible automate the onboarding of ecosystem partners. 

Commodity Ecosystem 
The commodity ecosystem again has a different focus from the other ecosystems: providing the 
commodity functionality at the lowest possible cost by engaging ecosystem partners while 
ensuring that the functionality is still delivered at quality. We can achieve this by collaborative 
approaches or by full outsourcing of certain functionality.  
 
Although the commodity ecosystem can easily be perceived as fundamentally different from the 
other ecosystems that we discussed so far, the generic steps to engage the ecosystem that we 
introduced earlier still apply: 

● Define strategy: Especially for a company that has used a reactive and late adoption 
approach to reducing cost around commodity functionality, the strategy has to focus on 
low hanging fruit and quick wins. As shifting from internal maintenance and evolution of 
commodity functionality to a collaborative or even outsourced approach will require 
significant cultural and operational changes for the company, it is important to set 
quantitative targets and to ensure that these are accomplished. That will provide 
significant support for the change across the organization. 

● Assign resources: Similar to the differentiating ecosystem, it is quite typical in this case 
that the best resources for assigning to engaging the ecosystem are the ones that used 
to do the work in the past. This may easily lead to forms of conflict or at least perceived 
conflict as the individuals may easily find themselves be obsolete. Hence, the resources 
assigned should be given a clear future career path, either as ecosystem coordinator or 
by being reassigned to differentiating functionality. 

● Engage first partners: The first partners to engage depends on the selected strategy, 
but these can be existing partners, such as suppliers, competitors from the same 
industry, players from other industries that have similar commodity functionality or 
communities such as open-source software communities. The key is to start small, learn 
and iterate to ensure that the desired outcomes are accomplished. 

● Quantitative tracking: Although the strategy determines what the specific targets are, 
one of the key metrics has to be to decrease the amount of internal R&D resources 
dedicated to commodity functionality. The engagement with the first partners as well as 
the subsequent scaling of different partner categories should be quantitatively tracked 
with the intent of reducing internal R&D resources concerned with commodity. 



● Scale engagement: Scaling the commodity ecosystem is concerned with ensuring that 
all partners generate sufficient value from participating in the ecosystem. This means 
that just paying suppliers more money is not a scalable strategy, but rather that the 
partners have to find other monetary or non-monetary forms of value that are exchanged 
in order to justify active participation. Although the company may need to seed the 
ecosystem to reach “ignition”, in the end, the ecosystem needs to reach a point of 
self-sustainment. In this context, the number of partners is a relevant metric, but it also 
has to be concerned with the right partners. 

 
Example: The data storage component at WKI contains a proprietary database, originally built 
by WKI. This database is optimized for deployment in small, resource constrained environments 
with intermittent connectivity. For instance, whenever the database is running out of space to 
store data, it automatically triggers algorithms to replace the oldest data with aggregated data 
that captures the key characteristics of the specific time period. 
 
Although the database is commodity, WKI has not been able to find a commercial or 
open-source replacement. Instead, it has reached out to some competitors and other 
companies in the IoT and automotive space and agreed to open-source the database in return 
for active development and contributions from the other parties.  
 
Although some in the company can’t understand why WKI would share code with competitors, 
many in the company realize that if their database becomes a successful OSS component with 
contributions from many developers, WKI will greatly benefit from those efforts. And not have to 
re-architect that part of their system to incorporate a new database while having minimal 
maintenance cost for the database obviously offers significant benefits. 

Strategies for Ecosystem Engagement 
Over the years, we have worked with a variety of companies concerning business and software 
ecosystems. As part of this work, we identified and collected the strategies that the companies 
use for engagement in the three ecosystems that we have discussed in this part of the book. 
We brought this together in the Three Layer Ecosystem Strategy Model [TeLESM]. In this 
section, we summarize these strategies 

Innovation Ecosystem Strategies 
Companies can employ a number of strategies to engage with the innovation ecosystem. In the 
list below, we present a set of innovation strategies that companies can employ. These 
strategies fall into three categories, internal, collaborative and external. 
 
Me-myself-I strategy (internal): Using this strategy, the company conducts all innovation 
activities internally, ranging from ideation to market validation. Typically, especially traditional 



companies with research labs brought often technology oriented innovations to market through 
the use of this strategy.  
Be-my-friend strategy (internal): Here a similar approach as the previous strategy is used, but 
with one exception: upon identifying the most promising internal innovations, the company aims 
to find partners to realize and validate the concept and bring it to market. Partners in this model 
are treated as suppliers that perform the activities in a contracted fashion.  
Customer co-creation strategy (collaborative): Typically customer-focused companies employ 
this strategy where they collaborate with customers to improve existing products or to create 
entirely new products. Together with one or a few customers a solution is created and then it is 
generalized for the entire customer base.  
Supplier co-creation strategy (collaborative): Here, rather than customers, suppliers are 
engaged as innovation partners. This strategy is selected when suppliers introduce new or 
improved technologies that allow for new use cases to be addressed or existing use cases to be 
improved upon. 
Peer co-creation strategy (collaborative): Especially in large companies, this strategy allows 
for different internal groups to collaborate on innovation. These groups can also be from 
different companies, but the key is that they should not have a competitive relationship.  
Expert co-creation strategy (collaborative): With the emergence of Open Innovation, some 
organizations have developed expert networks that can be approached with innovation 
challenges. Experts may compete or collaborate with each other to develop a solution that 
meets the criteria. 
Copycat strategy (external): This strategy is concerned with copying innovations that 
competitors have validated with customers. Although the company often will attempt to make it 
somewhat different from the competitor offerings, but the differences often are small. 
Cherry-picking strategy (external): When many innovations are available to the company, it 
can employ a cherry-picking strategy where it evaluates the available innovations and then 
selects the most promising and successful ones for incorporation. 
Orchestration strategy (external): When multiple partners from different industries need to 
come together to deliver an innovation, one keystone company has to orchestrate the partners 
and the innovation.  
Supplier strategy (external): Here, external partners are selected for collaborative innovation, 
but the company aims to turn these partners into “supplier-like” relationships. This allows the 
company to exercise more control and better ways to monetize successful innovations while 
sharing the cost of innovation through joint development. 
Preferred partner strategy (external): Using designated preferred partners allows the company 
to create alliances with selected external stakeholders that, over time, can become part of the 
differentiation ecosystem. A preferred partner may more readily sacrifice some short-term 
revenue or benefit for the relationship. 
Acquisition strategy (external): This strategy focuses most or even all innovation resources on 
identifying and acquiring companies with proven innovations and integrate these. Although 
expensive, it frees the company the funding and management attention concerned with internal 
innovation initiatives, allowing it to maximize the revenue growth and profit from the existing 
businesses. 



 
Although the strategies may not capture all opportunities, these provide a comprehensive 
overview of strategies used in industry based on research including more than a dozen 
companies. 

Differentiation Ecosystem Strategies 
Although companies use a wide variety of ecosystem strategies for innovation, we found that 
once functionality becomes part of differentiation, the strategies used in practice are focused 
internally. 
 
Increase control strategy (internal): When new differentiating functionality is introduced, early 
on quite diverse and customer-specific realizations are created. At some point, however, 
consolidation occurs and at this point, the company incorporates the functionality in its portfolio 
to increase control over new functionality, and reduce complexity for customers.  
Incremental change strategy (internal): As companies seek to extend the life of differentiating 
functionality, an effective strategy is to frequently release updates and improvements to the 
differentiating functionality to have the product advance in an evolutionary fashion.  
Radical change strategy (internal): In cases where it proves to be difficult to continuously 
deploy new functionality, this strategy is concerned with distributing infrequent but significant 
improvements to differentiating functionality to slow down commoditization of functionality and, 
where possible, attract new customer segments and/or new markets. 
Complementing strategy (collaborative): In this strategy, the company collaborates with 
partners that provide non-competing functionality to the same customer base while offering 
additional value resulting from the integration of these types of functionality. 
Platform control strategy (external): This strategy is employed by companies that provide a 
platform that others generate value on, such as two-sided markets. In this case, it is the 
ecosystem partners that innovate and seek to differentiate themselves. The platform company 
only seeks to ensure that these partners are critically dependent on the platform and are unable 
to leave the ecosystem.  
 
The strategies discussed here are fewer than for innovation and focused on obtaining and 
maintaining control of differentiation and to delay the commoditization of functionality. This is 
important as the main revenue drivers for companies originate in this category of functionality. 

Commodity Ecosystem Strategies 
Perhaps the most important set of strategies is concerned with freeing up internal resources 
allocated to commoditized functionality through the use of the ecosystem. Below we discuss 
some of the predominant strategies used in industry. 
 
COTS adoption strategy (external): A straightforward approach is to replace internally 
developed commoditized functionality with commercial off-the-shelf products. To do so requires 
some internal activities to reduce the number of variants of the functionality, standardize the 



interfaces and align these with the interfaces provided by the COTS component. Once done, the 
proprietary functionality can be replaced with the COTS component. 
OSS integration strategy (collaborative): Bespoke functionality can also be replaced with an 
open-source component instead of a COTS component. This strategy is collaborative as the 
community expects active collaboration and contribution from the companies adopting the 
component. Engaging with the community has as an advantage that additional commoditizing 
functionality that fits the component could be integrated into the OSS component as well.  
OSS creation strategy (collaborative): One, admittedly ambitious, approach is to initiate a new 
OSS community around commoditizing functionality for which no component exists. One 
strategy is to partner with competitors in the same domain in order to jointly develop a stack that 
all partners share in maintaining and evolving.  
Partnership strategy (external): Instead of creating an open OSS community, an alternative is 
to take a more closed and selective approach. In that case, one selects and approaches specific 
partners with the intent sharing of source code between selected partners. In this case, the 
partners can be internal to the company, such as in the case of inner source, or between 
companies, by, for instance, shared supplier arrangements. 
Rationalized in-sourcing strategy (internal): A very typical strategy in large, multi-national 
organizations is to shift maintenance and evolution of commoditizing functionality to other 
internal units that are based in low-cost geographical locations. Due to the lower salary cost, 
this reduces cost and does not require the company to open up to other partners. 
Outsourcing strategy (external): Alternatively, the company can outsource the maintenance 
and evolution to an external supplier who moves the responsibility for the functionality to one of 
its own low-cost sites and take responsibility for maintaining the component or subsystem. 
Push-out strategy (internal): The most obvious strategy, at least in theory, is to drop 
commoditized functionality by terminating maintenance and support and finally even removing 
the functionality from the code. This is of course the most cost effective solution. In practice, 
however, companies often don’t know what customers are still using the functionality and the 
perceived risk is often so high that companies do not even dare to consider it. 
 
There are several ways to reduce internal R&D investment in commodity functionality. In the 
earlier parts of the book we focused on internal strategies whereas here we focused on 
ecosystem strategies. The goal is the same: maximize the investment in differentiation and 
deliver commodity at the lowest total cost of ownership. 

Concluding Remarks 
This part of the book is concerned with engaging the ecosystem surrounding the company. We 
identified that there are three ecosystems that companies need to focus on, the innovation 
ecosystem, the differentiating functionality ecosystem and the commodity functionality 
ecosystem. Similar to the 3LPM model, each of these ecosystems have different goals and 
success metrics. We discussed the process for engaging each of the ecosystem types using a 
standard set of steps, starting from agreeing on strategy, assigning resources, engaging the first 
partners, quantitative measurement and finally scaling the engagement. 



 
Companies can use a variety of strategies to operate in each of these ecosystems and in the 
latter part, we introduced the three layer ecosystem strategy model (TeLESM) and the 
strategies that we have identified in our research. In the figure below, we provide an overview of 
the various strategies.  
 

 
Figure X: Overview of the TeLESM strategies 

Conclusion 
The role of software in society is increasing exponentially. There are several drivers for this. 
First, Moore’s law allows for doubling the amount of software in a system every 18 months 
without increasing the cost for the supporting electronics. Second, the flexibility and malleability 
that software offers allows companies to standardize mechanics and electronics and to 
differentiate products and systems through software. Third, continuous deployment allows 
companies to deliver updates and improvements to products and systems even after these have 
been deployed in the field. 
 
As a consequence of the aforementioned developments, however, the size of software in 
systems has been increasing rapidly as well and research shows that, depending on the 
industry, the size of software increases with an order of magnitude every five to ten years. This 



has many implications on software R&D but one of the primary ones is that a rapidly increasing 
amount of R&D resources are spent on software functionality that is commodity, meaning that it 
does not offer any differentiation as compared to competitors. In fact, in most companies as 
much as 80-90% of all R&D resources are expended on commodity functionality. 
 
This book provides one set of tools to address the aforementioned challenge of effectively and 
systematically reasoning about software assets, resource allocation, refactoring, platforms and 
engaging the ecosystem surrounding your organization. As the foundation for this set of tools 
we have developed the three layer product model (3LPM) as a tool and framework to reason 
about strategic use of software in large scale software engineering. The 3LPM, either 
conceptually or physically, organizes the software functionality into one of three types, i.e. 
commodity functionality, differentiating functionality or innovative and experimental functionality. 
By categorizing the functionality in a system, the 3LPM supports several types of decision 
making that allow for a much more strategic and focused approach to software R&D. The figure 
below shows the basic elements and structure. 

 
Figure X: The Three Layer Product Model 
 
Although the 3LPM may easily look like a high-level architecture picture, it can be used for 
several use cases concerning resource allocation, architecture refactoring, software platforms 
and ecosystems. In this short book, we have discussed the four primary use cases, organized 
as the four main parts of the book: 



1. Strategic resource allocation: In part I, we focused on the key problem that we raised 
earlier: resource allocation into software R&D is often conducted without any 
understanding or awareness of the differences between different areas of functionality in 
the system. Allocating resources in an undifferentiated fashion easily results in the 
majority of resources being allocated to commodity functionality rather than innovation 
and differentiation. In this part of the book, we started by categorizing the components in 
existing software as innovative, differentiating or commodity. Based on this, resource 
allocation can be controlled by allocating resources predominantly to innovation and 
differentiating functionality whereas only resources for bug fixing are allocated to 
commodity components. This facilitates limiting resources to commodity functionality and 
results in a much more strategic allocation of resources. 

2. Refactor software: Although part I is concerned with strategic resource allocation, it 
does not affect the structure of existing software assets. The second part of the book is 
concerned with refactoring the software to align with the architectural structure proposed 
by the 3LPM. This provides much simpler management of software assets and allows for 
organizational alignment with the main software layers. In part II, we focus on assessing 
the current architecture, designing the desired architecture and planning and 
implementing the transformation.  

3. Towards platforms: As the structure of the 3LPM suggests, there is a very natural 
transition from a single 3LPM for a system or product to a platform where the 3LPM is 
used to model where functionality is allocated and how it transitions. When a software 
asset (or multiple) are split into a platform and products on top of the platform, the 
interface and the process for moving functionality between products and platform need 
to be discussed. Of course, at this point it will also have become obvious that one can 
experience a cascading series of 3LPM where the commodity layer of one model, for 
instance a product, is aligned with the differentiation layer of the platform model that it is 
built on top of. This is the topic of part III. 

4. Engaging the ecosystem: In the final part of the book, we discussed the use of the 
3LPM to engage with the ecosystems around the company. Our research shows that it is 
helpful to consider that an organization is involved in at least three ecosystems, 
organized around the 3LPM layers, i.e. an innovation, differentiation and commodity 
ecosystem. As companies are no islands, the ability to engage ecosystem partners, 
either in a directed or undirected fashion, for those parts where the company itself does 
not have a unique differentiation is critical. However, once again, companies often lack a 
systematic and effective model for deciding when and where to engage their 
ecosystems. In this context, we’ll discuss the Three Layer Ecosystem Strategy Model 
(TeLESM) to provide strategic guidance on ecosystem engagement. 

 
Conceptually simple as it may be, the 3LPM model, using the four main strategies described in 
this book, can help you and your organization to double the effectiveness of R&D. By freeing up 
50% or more the resources allocated to commodity functionality and reassigning these 
resources to innovation and differentiating functionality, we can significantly increase the 
business value generated per unit of R&D effort invested. 



 
Together with another publication [Bosch 17b] where we discuss the use of data to build better 
products and at least double the ratio of valuable functionality versus unused functionality, this 
book offers you the opportunity to materially shift the strategic and competitive position of the 
company by focusing your R&D resources on the activities that matter and to free up resources 
in the areas where it doesn’t. Even though R&D managers often feel that many investments are 
unavoidable and as such feel victims of decisions made in years past, this book gives you the 
opportunity to retake control over your R&D investments and to ensure that decisions 
concerning R&D are closely aligned with your business strategy. Time to take back control and 
to focus on what really matters! 

References and Further Reading  
[Moore 93] Moore, James F. "Predators and prey: a new ecology of competition." Harvard 
business review 71.3 (1993): 75-83. 
 
[Bosch et al 13] Bosch, Jan; Olsson, Helena Holmström; Björk, Jens; Ljungblad, Jens; The early 
stage software startup development model: A framework for operationalizing lean principles in 
software startups, Lean Enterprise Software and Systems, 15-Jan 2013, Springer Berlin 
Heidelberg. 
 
[Bosch 17a] Bosch, Jan; Speed, Data, and Ecosystems: Excelling in a Software-Driven World, 
2017, CRC Press, ISBN 9781138198180 
 
[Bosch 17b] Bosch, Jan; Using Data to Build Better Products, CreateSpace Independent 
Publishing Platform, ISBN-10: 1541210808, 2017. 
 
[TeLESM] Holmström Olsson, Helena and Bosch, Jan, From ad hoc to strategic ecosystem 
management: the “Three-Layer Ecosystem Strategy Model” (TeLESM), Journal of Software: 
Evolution and Process, Volume 29, No 7, 2017. 
 
 
 
  


